
CPU Internals and the x86 Instruction Set
ft. graphics stolen from the internet

Tristan Miller
2024

1



1. making the sand think

2



the Transistor

• Invented in 1947 in Bell Labs
• Immensely cheaper, smaller, faster, and less energy-using
than vacuum tubes and relays

• Singlehandedly* allowed for the proliferation of
computers in everyday life

3



the Transistor

4



the Transistor

5



the Transistor

6



logic gates

• Transistors can be combined to create basic logic
operations

• NOT, AND, OR, NAND, NOR, XOR, XNOR

• More complicated operations can be created as
combinations of these simple ones

7



numbers

• Wires can be in two* states: on and off
• Computers use binary since it only requires two symbols
per place value

8



numbers (diy slide)

a demonstration of various binary arithmetic operations shall
proceed below

9



making the computer do numbers

• Full adder: implements a single column of addition
• Chain the Cout of one into the Cin of the next to add larger
numbers

10



arithmetic AND logic???

• Arithmetic logic unit (ALU) - unit that performs arithmetic
and logic

• Where do we get inputs and store outputs? registers!

11



memory and instructions

• Problem: it doesn’t do anything
• Solution: tell it to do things
• Attach some memory containing a list of instructions
• Program counter register stores location of next
instruction

• For each instruction:
1. Fetch it from memory, move the PC to the next instruction
2. Decode it to determine what to do
3. Execute it

12



types of ISAs

• RISC - fairly simple instructions that do one thing each
• CISC - instructions can be more complicated, take more
steps to execute

13



types of ISAs

• Load-store: instructions either load/store data between
memory and registers or operate on values already in
registers

• Register-memory: operations can operate on memory
directly

14



2. how did we get here

15



1971 - Intel 4004

• First microprocessor
• 4-bit data, 16 registers
• 12-bit addressing
• Separate memory for instructions and data (Harvard
architecture)

• Internal function call stack

16



1971 - Intel 4004

17



1972 - Intel 8008

• 8-bit data, 7 registers, larger call stack
• 14-bit addressing

18



1974 - Intel 8080

• 16-bit addressing
• Support for 16-bit operations using pairs of registers
• Stack pointer register replaces internal stack
• Zilog z80 - compatible with Intel 8080, adds additional
registers and instructions

19



1978 - Intel 8086

• Four general-purpose 16-bit registers, 8-bit halves can be
accessed as well

• AX (AL, AH), BX (BL, BH), CX (CL, CH), DX (DL, DH)

• Two index registers (SI, DI), base pointer BP and stack
pointer SP

• 20-bit addressing
• wait... so how does that work exactly?

20



aside - different address and data size

• 8- or 16-bit data is sufficient for many tasks, but memory
often needs to be bigger

• 4004 and 8008 used Harvard architecture and had internal
call stacks - no issue

• 8086 would need a different way to work around this

21



aside - different address and data size

• Segment registers - additional 16-bit registers
• CS (code)
• DS (data)
• ES (extra)
• SS (stack)

• Allow different things (code, data, stack) to be stored in
different parts of memory

• Programs that didn’t need much memory could set
CS=DS=ES=SS

• Programs that needed even more than 64K each for code,
data, and stack could change segments during execution

22



aside - different address and data size

23



8086 instruction set

• Similar to previous Intel ISAs
• ALU operations take two arguments - source and
destination

• add ax, bx (ax += bx)
• source can be register, memory, or immediate, destination
can be register or memory (at most one argument in
memory)

• Many addressing modes, including direct, indirect, and
indexed

24



8086 instruction set

• multiplication and division use ax and dx to store the
lower and higher bits of the result

• 256 interrupts
• push, pop, call, and ret instructions for managing the
stack

• string instructions that automatically increment si or di
• floating-point operations via optional 8087 coprocessor

25



80186 and 80286

• 80186 (1982) - small improvement, adds some new
instructions

• 80286 (also 1982) - 16-bit protected mode
• Virtual addressing expanded memory to 24 address lines
(16M)

• Memory protection prevented programs from accidentally
modifying their own code or trying to execute data

• Privilege levels prevent programs from accessing each
other’s memory

‘
• 286 protected mode turned out to be kind of terrible,
rarely actually used

26



Aside: the A20 Line

• Imagine: the year is 1984. you are IBM.
• Problem: some programs expected memory to wrap
around at the end, increasing address size to 24 bits would
break this.

• Solution: disable the extra memory by default!
• Problem: how do we enable it
• Another problem: you are IBM and are incapable of doing
things in sensible ways

• Solution: there’s an unused pin on the Intel 8042 keyboard
controller!

27



Intel 80386 (i386)

• Released in 1985
• Expands data and registers to 32-bit

1. EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI

• AX, AL, AH, etc. still work to access lower half of EAX, etc.
• 32-bit protected mode was actually good this time
• 32-bit addressing allowed for 4GB of memory

28



Paging and memory protection

• Four protection rings, only 0 and 3 used in practice
• Ring 0 code can set up page tables for individual ring 3
processes, each process can only read/write its own
memory

29



Paging and memory protection

30



i486 - i686

• i486 (1989) - integrated FPU
• i586/Pentium (1993) - basic SIMD instructions
• i686/Pentium II (1995)
• Various performance improvements with each new
processor - better pipelining, branch prediction,
speculative execution, etc

31



more bits

• Problem: 32 bits (or 4G of memory) is not very much
• Solution: more bits
• 2001: Intel released IA-64 (Itanium) architecture, NOT
backwards-compatible with x86

• 2003: AMD released AMD64 architecture, which WAS
backwards-compatible with x86

• which do you think caught on?

32



AMD64 / x86_64

• Current most popular architecture for personal computers
and servers[citation needed]

• Adds a 64-bit long mode with 64-bit data and addresses*
• Extends general-purpose registers to 64 bits

• RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI
• EAX, AX, AH, AL, etc. remain in the lower half of RAX, etc.

• Adds 8 new 64-bit registers: R8 - R15
• Removes* segment registers and other vestigial features
• Additional SIMD extensions

33



AMD64 / x86_64

34



3. in which i attempt a live assembly
programming demo

35


	making the sand think
	how did we get here
	in which i attempt a live assembly programming demo

