
The Linux Graphics Stack

Or Why X11 is Like That

Simon Kadesh

February 9, 2024

RITLUG



Introduction

• You are all looking at a graphical application

• How does it get displayed?

• Why is it so terrible?

1



Introduction

• You are all looking at a graphical application

• How does it get displayed?

• Why is it so terrible?

1



Introduction

• You are all looking at a graphical application

• How does it get displayed?

• Why is it so terrible?

1



Pre-history



The Teletype

• In the beginning, there was the teleprinter

• Electromechanical device for sending textual messages

• Then computers got invented – teleprinters turned out to be a

convenient interface for them

2



The Teletype

• In the beginning, there was the teleprinter

• Electromechanical device for sending textual messages

• Then computers got invented – teleprinters turned out to be a

convenient interface for them

2



The Glass Teletype

• Printers are kind of terrible:

• They’re slow

• They jam

• Paper costs money

• What if we could display text...

on a screen

3



The Glass Teletype

• Printers are kind of terrible:

• They’re slow

• They jam

• Paper costs money

• What if we could display text... on a screen

3



The Glass Teletype

• Printers are kind of terrible:

• They’re slow

• They jam

• Paper costs money

• What if we could display text... on a screen

3



The Glass Teletype

• Printers are kind of terrible:

• They’re slow

• They jam

• Paper costs money

• What if we could display text... on a screen

3



The Glass Teletype

• Printers are kind of terrible:

• They’re slow

• They jam

• Paper costs money

• What if we could display text... on a screen

3



The Terminal

• Display-based terminals are great – they solve all kinds of

problems with the teletype as a user interface

• They also open up room for new inventions

• Movable cursors

• Deleting

• Dinging

• With a nice enough terminal, working with a computer is

almost not terrible

4



The Terminal

• Display-based terminals are great – they solve all kinds of

problems with the teletype as a user interface

• They also open up room for new inventions

• Movable cursors

• Deleting

• Dinging

• With a nice enough terminal, working with a computer is

almost not terrible

4



The Terminal

• Display-based terminals are great – they solve all kinds of

problems with the teletype as a user interface

• They also open up room for new inventions

• Movable cursors

• Deleting

• Dinging

• With a nice enough terminal, working with a computer is

almost not terrible

4



The Terminal

• Display-based terminals are great – they solve all kinds of

problems with the teletype as a user interface

• They also open up room for new inventions

• Movable cursors

• Deleting

• Dinging

• With a nice enough terminal, working with a computer is

almost not terrible

4



The Terminal

• Display-based terminals are great – they solve all kinds of

problems with the teletype as a user interface

• They also open up room for new inventions

• Movable cursors

• Deleting

• Dinging

• With a nice enough terminal, working with a computer is

almost not terrible

4



The Terminal

• Display-based terminals are great – they solve all kinds of

problems with the teletype as a user interface

• They also open up room for new inventions

• Movable cursors

• Deleting

• Dinging

• With a nice enough terminal, working with a computer is

almost not terrible

4



The Virtual Terminal

• Computers are getting much more powerful

• We have the 386

• We have VGA

• We have hardware text mode

• How will we take advantage of it?

• We can simulate a terminal!

• Better yet, we can simulate lots of terminals

5



The Virtual Terminal

• Computers are getting much more powerful

• We have the 386

• We have VGA

• We have hardware text mode

• How will we take advantage of it?

• We can simulate a terminal!

• Better yet, we can simulate lots of terminals

5



The Virtual Terminal

• Computers are getting much more powerful

• We have the 386

• We have VGA

• We have hardware text mode

• How will we take advantage of it?

• We can simulate a terminal!

• Better yet, we can simulate lots of terminals

5



The Virtual Terminal

• Computers are getting much more powerful

• We have the 386

• We have VGA

• We have hardware text mode

• How will we take advantage of it?

• We can simulate a terminal!

• Better yet, we can simulate lots of terminals

5



The Virtual Terminal

• Computers are getting much more powerful

• We have the 386

• We have VGA

• We have hardware text mode

• How will we take advantage of it?

• We can simulate a terminal!

• Better yet, we can simulate lots of terminals

5



The Virtual Terminal

• Computers are getting much more powerful

• We have the 386

• We have VGA

• We have hardware text mode

• How will we take advantage of it?

• We can simulate a terminal!

• Better yet, we can simulate lots of terminals

5



The Framebuffer Device

• Problem: Not all systems have a hardware text mode

• Solution: Make a software text mode – thus emerged the

framebuffer (fbcon)

• We can also use the framebuffer for other things, like drawing

images, or displaying user interfaces

• Generally this is a bad idea, as the framebuffer does not

support hardware acceleration

6



The Framebuffer Device

• Problem: Not all systems have a hardware text mode

• Solution: Make a software text mode – thus emerged the

framebuffer (fbcon)

• We can also use the framebuffer for other things, like drawing

images, or displaying user interfaces

• Generally this is a bad idea, as the framebuffer does not

support hardware acceleration

6



The Framebuffer Device

• Problem: Not all systems have a hardware text mode

• Solution: Make a software text mode – thus emerged the

framebuffer (fbcon)

• We can also use the framebuffer for other things, like drawing

images, or displaying user interfaces

• Generally this is a bad idea, as the framebuffer does not

support hardware acceleration

6



The Point

• There are a few problems with the interfaces described thus
far:

• They’re all either hardware or in-kernel

• Most of them only display text

• The one option with graphics is slow

• We can do better

7



The X Window System



The X Window System

• In the year 1984, MIT researchers are working on “Project

Athena” to improve the available computer tools on campus

• This project ends up spawning the X Window System

• The people at MIT and DEC found that X was better than
existing graphical interfaces in many ways

1. X was hardware independent

2. X was vendor independent

3. X was network transparent

4. X was fast

8



X11

• Protocol update over X10 intended to increase hardware

independence

• Early X11 implementations were hardware terminals (e.g.,

VT1000)

• X11R5 included an implementation of the X11 server, called

X386, for PC compatibles

9



X386 & XFree86

• X386 was somewhat buggy

• Furthermore, the X Consortium stops existing in 1995, and

The Open Group isn’t doing much to develop X

• XFree86 introduces a number of useful features

• In particular, XFree86 splits the X server into a main server

which loads drivers, rather than a monolith for each possible

driver

10



Why everything is so terrible

• The goal of X was to decouple client software from the

hardware on which it runs

• Initially this was achieved by having a different X server for

each possible hardware

• XFree86 changed this, by making one server that could load
multiple drivers

• Consequentially, graphics drivers exist within the X server

• Leads the ongoing problem of having the graphics subsystem

tightly coupled to the X server

11



12



13



Modernity



Mesa

• Open source implementation of graphics APIs such as

OpenGL, and Vulkan

• Translates to hardware specific operations on the physical

GPU

14



DRI

• Device Dependent X is kind of terrible

• Graphics drivers in the X server

• Only the X server can do rendering or control the display

• Everything else needs to ask X as an intermediary

• DRI was designed to solve both problems – by putting

graphics drivers in kernel, we reduce coupling, and allow the

kernel to multiplex access to many different programs at the

same time.

• Unfortunately DRI fails to completely remove the scourge of

X.org interdependency – it’s still ultimately an X driver

15



16



DRM/KMS

• DRM is the part of the DRI project that manages rendering

• Give individual programs direct OpenGL contexts, rather than

rendering through the X server

• There’s still a problem: We still depend on X to set things up

and control the display

• This is where KMS comes in – we move the modesetting into

the kernel

17



18


	Pre-history
	The X Window System
	Modernity

