
Linux API

Tristan Miller, Simon Kadesh
2023

1



What is a kernel?

• Runs in a higher privilege level than user processes (Ring
0 on x86)

• Manages system resources
• Isolates processes from each other and from hardware
details

2



What is a syscall?

• CPU instruction that tells the kernel to do a thing
• Linux provides a C function for each syscall
• man 2 syscalls

3



File descriptors

• ”Everything is a file”
• File descriptor: integer that refers to a file
• Standard streams: stdin (0), stdout (1), stderr (2)

4



Types of files

• S_IFREG: regular file
• S_IFDIR: directory
• S_IFBLK: block device (hard disk, SSD, etc.)
• S_IFCHR: character device (serial ports, TTYs, etc.)
• S_IFIFO: FIFO/named pipe
• S_IFSOCK: socket (TCP, UDP, Unix, etc.)

5



open(2)

int open(char *pathname, int flags,
... /* mode_t mode */ );

• Open the file at the specified path
• Returns a new file descriptor, or -1 on failure
• O_RDONLY, O_WRONLY, O_RDWR: read or write to the file
• O_APPEND: append instead of overwriting
• O_CREAT: create the file if it doesn’t exist
• O_NONBLOCK: reading/writing won’t block
• O_ASYNC: async I/O - send a signal when ready to
read/write again

• etc.

6



close(2)

int close(int fd);

• Close the specified file
• Return 0 on success, -1 on failure

7



read(2)

ssize_t read(int fd, void buf[], size_t count);

• Read at most count bytes from the file into the buffer
• May read fewer than count bytes
• Returns the number of bytes read, or -1 on failure. 0
usually indicates EOF.

8



write(2)

ssize_t write(int fd, void buf[], size_t count);

• Write at most count bytes from the buffer to the file
• May write fewer than count bytes
• Returns the number of bytes written, or -1 on failure.

9



stat(2), fstat(2), lstat(2)

int stat(char *pathname, struct stat *statbuf);

• Get information about a file by its path (you don’t need to
open it first)

• fstat: same as stat but takes a file descriptor
• lstat: same as stat but doesn’t follow symlinks
• Use stat(1) from the command line for human-readable
info

10



Sockets

Server Client

socket socket

bind

listen

accept connect

read write

write read

11



socket(2)

int socket(int domain, int type, int protocol);

• Open a socket and return its file descriptor
• Domains: AF_INET, AF_INET6, AF_UNIX, etc.
• Types: SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET,
SOCK_RAW, etc.

• Protocol: usually 0

12



connect(2)

int connect(int sockfd, struct sockaddr *addr,
socklen_t addrlen);

• Connect socket to the given address
• Type of addr depends on socket type

13



bind(2)

int bind(int sockfd, struct sockaddr *addr,
socklen_t addrlen);

• Bind a socket to an address so it listens for incoming data
• Type of addr depends on socket type

14



listen(2)

int listen(int sockfd, int backlog);

• Mark a socket as accepting connections

15



accept(2)

int accept(int sockfd, struct sockaddr *addr,
socklen_t *addrlen);

• Wait for a new incoming connection
• Returns a new file descriptor, address of new connection
stored to addr

16



fcntl(2), ioctl(2), setsockopt(2)

int fcntl(int fd, int cmd, ... /* arg */ );
int ioctl(int fd, unsigned long request, ...);
int setsockopt(int socket, int level,

int option_name, void *option_value,
socklen_t option_len);

• Used to get information about and change settings on file
descriptors

• fcntl: change file descriptor and status flags (see
open(2))

• ioctl: used to configure devices/drivers represented by
a file

• setsockopt: used to change socket-specific options

17



poll(2)

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

• Wait on multiple file descriptors at once
• struct pollfd: contains file descriptor, events you
want to wait for, and events that occured

• POLLIN, POLLOUT, POLLHUP, POLLERR
• timeout: optionally specify a timeout, -1 to disable‘
• After poll returns, check each struct pollfd to see if
any events occurred

• There’s also select(2) and iouring(7)

18



sysfs(5), procfs(5)

• Virtual filesystems which expose various information and
control mechanisms to userspace

• sysfs exposes the kernel and the hardware
• devices contains representations of the kernel device
tree

• firmware contains firmware-specific variables and
objects

• fs contains filesystem information
• kernel contains kernel information and settings
• module contains information about kernel modules
• power contains power information

19



procfs(5)

• procfs exposes processes
• Directory structure of the form /proc/<PID>/
• Directories contain files that provide information about
that process

• cmdline the command that started the process
• cwd the current working directory of the process
• environ the environment variables
• exe the actual executable of the process
• fd a directory of all open file descriptors
• fdinfo a directory containing information about open file
descriptors

• maps information about mapped memory
• root the process’s root (usually /)
• status basic status of the process
• task a directory of started tasks from this process

20



cgroups(7)

• Problem: We’ve got a bunch of processes and we want to
be able to know and control what they’re doing

• Not really any good way to do this in POSIX
• Process groups and sessions exist, but they’re too easy to
escape (either accidentally or on purpose)

• This is the ”double fork” that some processes use to
daemonize

• Solution: We need a way to reliably group processes
• cgroups (control groups) provide this functionality

• We can interact with cgroups through the cgroup virtual
filesystem

• We can control how processes can move between cgroups
• We can impose restrictions on which resources processes
can use

21



cgroups continued

• cgroups are controlled through a virtual filesystem
• sys/fs/cgroup

• The cgroup filesystem has a tree structure
• Each directory defines a group
• Groups are defined as follows

• Each group has cgroup.controllers and
cgroup.subtree_control

• Each group has a cgroup.events and cgroup.stat
• Groups can either contain processes or subgroups, but not
both

• Processes are assigned cgroups using the procfs filesystem
• cgroups are often utilized together with namespaces to
build containers

22



evdev

• The evdev virtual filesystem is how the Linux kernel
exposes raw input events from device drivers to the kernel

• /dev/input contains files corresponding to character
devices

• Input events are written to the files in the form of a struct
containing the timestamp, the event type, the event code,
and the event’s value

23



drm(7)/kms

• Graphical interfaces are great, but they come with one big
problem

• Only one program can control the actual physical GPU at a
time

• Thus a system to manage (direct) rendering was necessary
• DRM exposes graphics devices under the /dev/dri file
hierarchy

• /dev/dri/card* files are full device nodes that
implement both priveleged and rendering functionality

• /dev/dri/renderD* files are render nodes which only
allow rendering

• Almost all of the functionality in DRM is controlled
through ioctl syscalls on these device files

24



ALSA

• The Linux sound stack (usually) consists of a kernel-space
component (ALSA) and a userspace component (usually
pulseaudio, pipewire, JACK, etc.)

• ALSA is responsible for managing audio devices and their
drivers

• The only sensible way to interface with ALSA seems to be
the alsa-lib C library, also provided by the ALSA project

25


