
Godot!

Jam page
RGDC Discord

What’s godot?

● A FOSS game engine (ofc why else would I be talking about it here)
○ MIT license

● 2D and 3D

● C#, GDScript, and many other language bindings through GDExtension
○ Rust, Swift, C++

● Available for Linux, Windows, MacOS, Android, and on the web.
○ Supposedly works on BSD too

● Can export to Linux, Windows, MacOS, iOS, Android, and web

● Yes you can also compile from source

https://docs.godotengine.org/en/stable/contributing/development/compiling/compiling_

for_linuxbsd.html

https://docs.godotengine.org/en/stable/contributing/development/compiling/compiling_for_linuxbsd.html
https://docs.godotengine.org/en/stable/contributing/development/compiling/compiling_for_linuxbsd.html

I’m not a game developer, this isn’t RGDC, Google
slides isn’t FOSS why are you using it?

● Godot can be used for developing cross-platform software and tools!
○ https://itch.io/c/651672/tools-made-with-godot-engine

○ https://godotengine.org/showcase/rpg-in-a-box/

○ https://godotengine.org/showcase/dungeondraft/

○ https://godotengine.org/showcase/material-maker/

○ https://godotengine.org/showcase/pixelorama/

● Godot itself is kind of a godot game
○ https://docs.godotengine.org/en/stable/getting_started/introduction/godot_design_philosophy.ht

ml#the-godot-editor-is-a-godot-game

https://itch.io/c/651672/tools-made-with-godot-engine
https://godotengine.org/showcase/rpg-in-a-box/
https://godotengine.org/showcase/dungeondraft/
https://godotengine.org/showcase/material-maker/
https://godotengine.org/showcase/pixelorama/
https://docs.godotengine.org/en/stable/getting_started/introduction/godot_design_philosophy.html#the-godot-editor-is-a-godot-game
https://docs.godotengine.org/en/stable/getting_started/introduction/godot_design_philosophy.html#the-godot-editor-is-a-godot-game

Getting started

1. Go to https://godotengine.org/

2. Click “download latest” (download the .NET version for C# support)

3. Run the executable

(You can also get it from most package managers, itch, steam, and the EGS… but like, why?)

https://godotengine.org/

The Project Manager

It manages

projects

Click “New Project”

Select a path

Choose a name

Click “Create folder”

Click “Create & Edit”

File browser

Scene Tree

Viewport

Inspector

View selection

Bottom Panel

Play Controls

3 main concepts

Nodes

Resources

Signals

Nodes

● Analogous to GameObjects, Scenes, and components in Unity

● Organized in a tree structure

● All scenes have a root node

● To add functionality, create child nodes

● Getting nodes by path with get_node() or $pathname

● Nodes inherit from other nodes

● It’s possible to define your own node types!

Creating a scene

● Click “2D scene” to create a Node2D at the root.

● Control+S to save to a file

Creating a character controller

● Godot has a CharacterBody2D node, which is a 2d physics body meant for character

movement

● The CharacterBody2D node requires a CollisionShape2D node as a child.

● You can use the options along the top to move nodes with a transform (or use the

inspector)

Resources

● Represent any data

● Many types build-in:
○ Animation, Colliders, Meshes, Curves, Fonts, Textures, Materials, Key Shortcuts

● You can even create your own to store custom data!
○ Similar to scriptable objects in Unity (But Godot can serialize dictionaries!)

● To function, our CollisionShape2D needs to know what collision shape to use

● Afterwards, we can expand to change its properties

More about resources

● The collision shape we made is saved in the scene file

● But we can save resources to files to reuse them!

● You can also copy and paste resources
○ Be careful - if you paste a resource somewhere else and change it, it will also

change the original!

○ Use the “Make Unique” option in the right click menu to avoid this.

● Can also create resources in the file manager

Giving the character some visuals

● Let’s add a Sprite2D node to our character

● We can chose the texture resource manually…

● …or just drag an image in

* make sure the collider size and sprite match!

Making a script

● Right click in file manager -> new script

● Choose a name

● Open the scripts view using the button at the top

GDScript

● Similar to Python and Lua

● Scripts extend a certain node type, which determines which nodes they can be attached

to

● Lots of nice features to make game development really easy

● In Unity, _ready is analogous to Start, _process is analogous to Update

Writing a top-down character controller

● Input maps are defined in Project->Project Settings->Input Map (We’ll use the built-in UI

actions for simplicity though)

● “Ugh we have to make if statements for each of the four inputs to see if they’re pressed

and sum together into a vector and then normalize it so you can’t go faster when going

diagonal”

Moving the character

● First we need to inherit from CharacterBody2D to get access to velocity

● Set the velocity

● Call “move_and_slide”
○ The CharacterBody2D doesn’t move based on physics - this tells it to move, and slide against any

colliders

● Now, let’s add our script to the CharacterBody2D node (click and drag)

● Run!

Making it a 2d platformer

● First let’s rename nodes to be more clear
○ Let’s name our CharacterBody2D node “Player”

○ While we’re at it, save this as a scene so we can reuse it

Adding gravity

● We can define const values

● Or make it an export so we can change it in the editor

● Use “var” to define a variable

● Use type hints to speed up code (required for exports)

Our 2d character movement script

Add some platforms

● StaticBody2D is for physics objects that don’t move

Signals

● Used to broadcast events or send data to other nodes

● Built-in nodes usually have many signals

● As always, you can define your own

Using Signals

● Let’s make a gravity reverse trigger

● Create an Area2D - it can detect if objects enter an area

● In the inspector, select the “Node” tab

● There are a lot of signals

Detect entering an area

● We want a signal sent when the area is entered

● Select the node with the script we want to call a function of
○ In our case, we only have the player script

● It will create a function if it doesn’t exist, but you can use an

existing function as well

● Basic collider check:

Detect leaving an area

● We can use the body_exited signal

* The green arrow means its connected to one or more signals - click it to see all of them!

Cool Stuff about Godot

● Press F1 to start searching documentation for anything in Godot
○ Or control+click stuff in your code

● Make your own docs with double comments!

Cool Stuff (cont.)

● Godot’s UI tools are very extensive
○ Godot’s own UI is made with Godot’s UI elements!

○ When creating editor plugins, you can use Godot’s UI editor to create the UI for your plugin!

● Click+drag any properties from the inspector into your code to get their names.

Cool Stuff (cont.)

● Updates!
○ Godot is constantly getting huge updates right now, thanks to increasing interest and some sizable

donations.

