
Declarative Distros

11

Quick Disclaimer

We are both GNU Guix Users

Whi le we wi l l try to talk about general it ies of declarat ive

operat ing system paradigms, Guix and Nix specif ic th ings,

etc, we may get some Nix (and even Guix) th ings wrong.

22

What is a Declarative Distro?

What does it mean?

33

A operating system defined by configurat ion

Without state

System is reproducib le

44

Declarative v. Imperative

Most distros are imperative

You give them commands to get a result

Nix and Guix are declarat ive

You define a wanted end state and Guix/Nix gets you

there its way

55

Reproducible

Systems have a given conf igurat ion

Conf igurat ion can produce ident ical systems

If you pin vers ions, you can make your system complete ly

reproducib le

Everyth ing is isolated

66

Reproducible

77

Isolation

Packages are bui lt in isolated packages

No random spare fi les in fi le system

Anyth ing not being used by a prof i le is el igib le for

garbage-col lect ion

Al l state is containted

Preserves state-less root

Can be further extended to your home directory

88

Stability

Reproducib i l i ty and Isolat ion ensure the ab i l i ty to rol lback

Always have some working system state

Since any transact ion is atomic, it either works or doesn't

Your system wi l l never be left in a half updated state

that is diff icult to recover

When updating, the actual "commit" is changing a syml ink

around

99

NixOS

Released Jun 2003

Eelco Dolstra

Nix package manager

(nix)

Nix language

Systemd

Wrote l ike an entire

research paper on the

theory beh ind Nix 1010

Guix

Released 2012

Forked from Nix

Guix package manager

(guix)

GNU Gui le (scheme/l isp)

GNU Shepherd

Not GNU/Herd

1111

Declarative Package Management

nix and guix commands

1212

Declarative Package Management

Update system repositor ies

Bui ld and/or instal l packages

Manage the store

1313

Distro Store

Guix /gnu/store

Nix /nix/store

Stores al l package and system fi les

Contents are based off of conf igurat ion

1414

What is the store like?

Lots of fi les that look l ike {hash}-package-version

1515

Example

1616

What is the store like?

Hash is der ived from a bui ld dependency graph

A program can use any vers ion of a l ibrary it needs

A program bui ld hash is unique, if any dependency changes

the hash wi l l as wel l.

This means new updates never overwrite old vers ions

1717

Profile

Guix ~/.guix-profile

Nix ~/.nix-profile

Syml ink Read only system

Links store to current prof i le

Based off conf igurat ion

1818

Store holds system and package fi les

Prof i le l inks to those fi les

1919

Multidirection

2020

Multiple Profiles

System Profi le (Al l users)

Good to contain system needed pacakges

Graph ics dr ivers

Zsh

User Profi le (Specif ic user)

Good to contain al l user data

Browser

Appl icat ions

DE/WM
2121

To Build The System

Package manager takes in user and system configurat ion

Downloads needed data into store

Prebui lt, signed b inar ies are cal led "subst itutes"

Bui ld any needed packages

Syml inks the user and system profi les

2222

Temporary Packages

Nix and Guix al low instal l i ng packages temporar i ly

Uses contained environment

guix shell <package>

nix shell -p <package>

2323

What is a package?

Since Nix and Scheme are funct ional, packages are immutab le

pure funct ions

They define everyth ing from:

Inputs

Dependencies

Expected Outputs

Bui ld environment

Bui lds are complete ly isolated from one another

You cannot forget to define a dependency

You can guarantee that package wi l l bui ld for everyone

once you get it working

Al d th b

2424

