7% [
Declarative Distros ix‘v



Quick Disclaimer

We are both GNU Guix Users

While we will try to talk about generalities of declarative
operating system paradigms, Guix and Nix specific things,

etc, we may get some Nix (and even Guix) things wrong.

b



What is a Declarative Distro?

What does it mean?



e A operating system defined by configuration
e Without state

e System is reproducible



Declarative v. Imperative

e Most distros are imperative
o You give them commands to get a result
e Nix and Guix are declarative
o You define a wanted end state and Guix/Nix gets you

there its way



Reproducible

e Systems have a given configuration
e Configuration can produce identical systems
o |f you pin versions, you can make your system completely
reproducible

e Everything is isolated



Reproducible

BB




R ERATN

e Packages are built in isolated packages
e No random spare files in file system
o Anything not being used by a profile is eligible for
garbage—collection
e All state is containted
o Preserves state—less root

o Can be further extended to your home directory



Stability

e Reproducibility and lIsolation ensure the ability to rollback
e Always have some working system state
e Since any transaction is atomic, it either works or doesn't
o Your system will never be left in a half updated state
that is difficult to recover
o When updating, the actual "commit" is changing a symlink

around



i

N

T

Nix0S

e Released Jun 2003
o Eelco Dolstra

e Nix package manager
(nix)

e Nix language

e Systemd

e Wrote like an entire
research paper on the
theory behind Nix



Gruix

e Released 2012
o Forked from Nix
e Guix package manager
(guix)
e GNU Guile (scheme/lisp)
e GNU Shepherd
o Not GNU /Herd



Declarative Package Management

nix and guix commands



Declarative Package Management

e Update system repositories
e Build and/or install packages
e Manage the store



Distro Store

e Guix /gnu/store
e Nix /nix/store
e Stores all package and system files

e Contents are based off of configuration



What is the store like?

e Lots of files that look like {hash{—package—version



Example

/gnu/store/spxcag8gnmckhzz9a 1wm3qc9dmzbbvsd—gcc—toolchain—12. 3. 0



What is the store like?

e Hash is derived from a build dependency graph
o A program can use any version of a library it needs
o A program build hash is unique, if any dependency changes
the hash will as well.

o This means new updates never overwrite old versions



Profile

e Guix ~/.guix—profile
e Nix 7/ .nix—profile
e Symlink Read only system
o Links store to current profile

o Based off configuration



e Store holds system and package files
e Profile links to those files



Multidirection

$ which gcc
/home /tylerm/ . guix—home /profile /bin/gcc

$ readlink /home/tylerm/ . guix—home /profile/bin/gcc
/gnu/store/spxcaq8gnmckhzz9a 1wm3qc9dmz5bvsd—gcc—toolchain—12 . 3. 0 /bin/gcc

20



Multiple Profiles

e System Profile (All users)
o Good to contain system needed pacakges
o Graphics drivers
o Zsh
e User Profile (Specific user)
o Good to contain all user data
o Browser
o Applications
o DE/WM



To Build The System

e Package manager takes in user and system configuration
e Downloads needed data into store

o Prebuilt, signed binaries are called "substitutes'
e Build any needed packages

e Symlinks the user and system profiles

22



Temporary Packages

e Nix and Guix allow installing packages temporarily
e Uses contained environment

e guix shell <package>

e nix shell —p <{package>

23



wilav S a PaLRago/

e Since Nix and Scheme are functional, packages are immutable
pure functions
e They define everything from;
o Inputs
o Dependencies
o Expected Outputs
o Build environment
e Builds are completely isolated from one another
o You cannot forget to define a dependency
o You can guarantee that package will build for everyone

once you get 1t working

24



