
From zero to... Somewhatover zero: Git
Presented By: Ryan Schanzenbacher

What is Git??
• Git is a free and open source VCS (Version Control System)developed by Linus T.
• Yeah, that Linus T. (Torvalds)

What is Git??
• Created by Torvalds in 2005 to replace the BitKeeper SourceControl Management Utility

• It was the best available tool at the time compared to others• The licensing model was very weird. It was proprietary, but use forcertain OSS projects were allowed.•As long as you didn’t develop competing software• Which no one did! Not explicitly at least. The license to use BitKeeperwas revoked when the owner of BitKeeper determined that AndrewTridgell broke this license by reverse-engineering the protocol to makea client for BitKeeper to view metadata, such as diffs between commits.• This feature was only available on the commercial version of BitKeeper

What is Git??
• Other solutions existed at the time BitKeeper access wasremoved (CVS, Subversion, etc.)

• However one design goal of git was to take what CVS did as anexample of what NOT to do. When in doubt, do the opposite!
• None of the options really pleased Linus in terms ofperformance and usability

• He wanted merges to take no longer than 3 seconds, even in morecomplicated setups

What is Git??
• So, as a solution, he decided to make his own VCS.

•As one does
• Development started on April 3, 2005
• Project was announced April 6, 2005
• Became self-hosting (meaning it used itself to track development)April 7, 2005
• Linux kernel switched over and first merge occurred April 18, 2005

Let’s create a repository!
• The beginning of any git repository is a `git init` command

• This will transform the current working directory into the root of a gitrepository• Nothing is stored in the repo yet, but it can have properties (like branchnames, remotes, etc.) added

Let’s make some files
• Now that we have an empty (or not so empty) repository, let’sstart tracking its state with git.
• The command `git add {filename}` will add files to git, makingthem ready to be commited in the next step
• You can add single files at a time to pick and choose what isincluded in a commit, or another common command is `git add .`for adding all changed files from PWD downwards

`git add .`

Making it permanent
• The last step in the basic workflow is to commit your changes
• This will take a “snapshot” of your repo at that moment that youcan reference back to later
• Can add messages, sign them with a GPG Key, and many otherthings

How do we find these again?
• Now that we have a commit made, we can view it (and thehistory of all our other commits) using the `git log` command

Cool, now my code is messed up
• How do I actually use git to restore a previous version of mycode?
• Use `git revert` to create a new commit that reverses previouscommits
• `git revert` is the best option to reverse your entire repository,especially if you’ve already pushed to a remote (like github)since you will avoid force-pushing and ruining history.
• Other option DO exist!

What if.....
• I want to explore a previous state, but don’t want to actuallycommit it back?

• Use `git checkout {commit_hash}`. That command will bring yourworking tree to the state of that commit, but you don’t erase any of yourfuture commits. You can easily change back by running `git checkout{branch_name}`
• I want to restore a single file from a previous commit, not theentire repository

• Use `git checkout {commit_hash} - - {path/to/file1 file2...}`• Make sure you add/commit after this to keep the revert!

Branches!
• One of the most powerful concepts in git is the ability to branchyour repository
• As of now, all of our commits have essentially looked like a line

Branches!
• However, what if you want to develop a new feature/test somecode without wrecking your current state?
• This is where you use branches!
• This will make your commit history look something like this

Branches!
• Their main purpose is to be a place for testing code to go,eventually to be merged back into the main branch
• Commits and development can happen on any number ofbranches concurrently

• That is to say: You can switch between them and make commits to anyone you want. This allows for non-linear development
• Another use they have is to maintain separate features forwhatever reason may be needed

• In that case, development just continues on each branch

How to use branches
• First, let’s see what branches we have. `git branch –a` showsyour current branches
• To create a new branch, use `git checkout –b {name}`

How to use branches
• Now you just follow your workflow that we described before
• To switch between branches (make sure you commit first!) usethe command `git checkout {branch_name}`
• When you’re ready to merge your changes back into your mainbranch, you switch to the branch you want things to go into(usually main), then run the command `git merge {branch}`

Github workflow!
• When working with Github, it is best practice to contribute toprojects the following way:

• Create a fork of the project (fork button in Github) and clone it to yourmachine (`git clone {URL}`)• When in the repo on your machine, create a new branch to developyour feature on• When you have all your commits made, push to your github fork• Github will prompt you (due to pushing a new branch to a fork) if you’dlike to make a pull request• Draft the pull request and wait for feedback from maintainers!

Demo time!!
We’ve been looking at the porcelain... It’s time to look at theplumbing :)

