From zero to... Somewhat
over zero: Git

Presented By: Ryan Schanzenbacher

ritlug.com

What I1s Git??

e Git is a free and open source VCS (Version Control System)
developed by Linus T.

e Yeah, that Linus T. (Torvalds)

T F

e S EM s o R TR EFT & ~h

s&. Windows

l- ﬁg L :;- , A3 |

What I1s Git??

* Created by Torvalds in 2005 to replace the BitKeeper Source

Control Management Utility
* It was the best available tool at the time compared to others

* The licensing model was very weird. It was proprietary, but use for
certain OSS projects were allowed.

eAs long as you didn’t develop competing software

 Which no one did! Not explicitly at least. The license to use BitKeeper
was revoked when the owner of BitKeeper determined that Andrew
Tridgell broke this license by reverse-engineering the protocol to make
a client for BitKeeper to view metadata, such as diffs between commits.

 This feature was only available on the commercial version of BitKeeper

What I1s Git??

e Other solutions existed at the time BitKeeper access was
removed (CVS, Subversion, etc.)

 However one design goal of git was to take what CVS did as an
example of what NOT to do. When in doubt, do the opposite!

* None of the options really pleased Linus in terms of
performance and usability

 He wanted merges to take no longer than 3 seconds, even in more
complicated setups

What I1s Git??

e SO, as a solution, he decided to make his own VCS.
°« As one does

* Development started on April 3, 2005
e Project was announced April 6, 2005

 Became self-hosting (meaning it used itself to track development)
April 7, 2005

 Linux kernel switched over and first merge occurred April 18, 2005

Let’'s create a repository!

* The beginning of any git repository is a git initt command
 This will transform the current working directory into the root of a git

repository
* Nothing is stored in the repo yet, but it can have properties (like branch
names, remotes, etc.) added

~/Projects/git_example
B 34%) git init
Initialized empty Git repository in /home/ryan/Projects/git example/.git/

git example on ! main

O 34%) I

Let’'s make some files

 Now that we have an empty (or not so empty) repository, let’s
start tracking its state with git.

« The command git add {filename} will add files to git, making
them ready to be commited in the next step

e You can add single files at a time to pick and choose what is
Included in a commit, or another common command is git add .
for adding all changed files from PWD downwards

tadd .

37%) git status
On branch main

No commits yet

Untracked files:
(use "git add <file=..." to include in what will be committed)

but untracked files present (use "git add" to track)
on ! main [7]
add
on [main
status

No commits yet

Changes to be committed:
(use "git rm --cached <file=..." to unstage)
new file:
new file:
ew Tile:

git example on |! main

37%) I

Making It permanent

e The last step In the basic workflow Is to commit your changes

* This will take a “snapshot” of your repo at that moment that you
can reference back to later

e Can add messages, sign them with a GPG Key, and many other
things

git example on |! main [+]
B 40%) git commit -m "My first commit"”
[main (root-commit) 99aclf9] My first commit
3 files changed, 3 insertions(+)
create mode 100644 filel

create mode 100644 fileZ
create mode 1080644 file3
git _example on [main took 17s

o 40) |

How do we find these again?

 Now that we have a commit made, we can view it (and the
history of all our other commits) using the git log- command

git example on ! main

B 45%) git log

commit 76c72fd@ldaf2fafb5aeB8bb0lde27efobl8a8dcc (HEAD -> main)
Author: Ryan Schanzenbacher <ryan@rschanz.org=

Date: Fri Sep 16 11:08:06 2022 -0400

Another commit
commit 99aclf9c7ed44fobdba955571db52968749fa7f119

Author: Ryan Schanzenbacher <=ryan@rschanz.org=
Date: Fri Sep 16 09:46:43 2022 -0400

My first commit
git example on ! main

o 45% > |

Cool, now my code Is messed up

 How do | actually use git to restore a previous version of my
code?

e Use qit revert to create a new commit that reverses previous
commits

e git revert is the best option to reverse your entire repository,
especially if you've already pushed to a remote (like github)
since you will avoid force-pushing and ruining history.

e Other option DO exist!

git example on main

0 54% » git log

commit 855635fafeld67efb7d9e65T2bf558T6e5ec8841 (HEAD -> main)
Author: Ryan Schanzenbacher <ryan@rschanz.org=

Date: Fri Sep 16 11:18:42 2022 -0400

Bad commit!
commit 76c72fdeldafzfatb5ae8bboldez27efObl8a8dcc
Author: Ryan Schanzenbacher <ryan@rschanz.org=
Date: Fri Sep 16 11:08:06 2022 -0400

Another commit
commit 99aclf9c7e44f0bdba955571db5290749fa7f119

Author: Ryan Schanzenbacher <ryan@rschanz.org=
R Fri Sep 16 09:46:43 2022 -0400

My first commit
git example on [main
B 54% » git revert 055635fafe...76c72fdold
[main dd88f29] Revert "Bad commit!”
1 file changed, 2 deletions(-)
git_example on [main took 8s

IR |

What If.....

| want to explore a previous state, but don’t want to actually
commit it back?

* Use git checkout {commit_hash} . That command will bring your
working tree to the state of that commit, but you don’t erase any of your
future commits. You can easily change back by running "git checkout
{branch_name}

| want to restore a single file from a previous commit, not the
entire repository
» Use git checkout {commit_hash} - - {path/to/filel file2...}
 Make sure you add/commit after this to keep the revert!

Branches!

* One of the most powerful concepts in git is the ability to branch
your repository

» As of now, all of our commits have essentially looked like a line

O—0O—0O

Branches!

 However, what if you want to develop a new feature/test some
code without wrecking your current state?

e This is where you use branches!
 This will make your commit history look something like this

O—Q—0
~O—0O

Branches!

 Their main purpose Is to be a place for testing code to go,
eventually to be merged back into the main branch

« Commits and development can happen on any number of

branches concurrently
e That Is to say: You can switch between them and make commits to any
one you want. This allows for non-linear development

 Another use they have Is to maintain separate features for
whatever reason may be needed
* In that case, development just continues on each branch

How to use branches

 First, let’s see what branches we have. git branch —a” shows
your current branches

e To create a new branch, use git checkout —b {name}

git example on [main
L1t branch -a

on |! main
checkout -b new branch

a new branch 'new branch’
on ! new branch

How to use branches

* Now you just follow your workflow that we described before

e To switch between branches (make sure you commit first!) use
the command git checkout {branch_name}

 When you're ready to merge your changes back into your main
branch, you switch to the branch you want things to go into
(usually main), then run the command git merge {branch}

O—Q—0O—0O—
~O—(Y

git example on new

B 79%) 1s

filel file2z file3 new filel new file2

git_example on [new_branch

@l 79%) git log HEAD...HEAD~1

commit 3bc788ab2209b7d251cleb311ddl3af7766bl2el (HEAD -> new_branch)
Author: Ryan Schanzenbacher =ryan@rschanz.org=

Date: Fri Sep 16 11:45:43 2822 -0400

Commit from another branch!
git example on |! new branch
A 79% » git checkout main
Switched to branch 'main'
on ! main

filel filez file3

git example on | main

fl 79%) git merge new branch
Updating ddg8sf29..3bc788a

Fast-forward
new Tilel | 1 +
new file2 | 1 +
2 files changed, 2 insertions(+)
create mode 180644 new filel
create mode 100644 new TileZz
git example on | main
B 79% > 1s
filel file2 file3 new filel new file2
git example on | main
B 79%) git log HEAD...HEAD~1
commit 3bc788ab2209b7d251cleb311dd13af7766bl2el (HEAD -> main, new branch)
Author: Ryan Schanzenbacher <ryan@rschanz.org=
Fri Sep 16 11:45:43 2022 -0400

Commit from another branch!
git example on [main

o 79%) ||

Github workflow!

 When working with Github, it Is best practice to contribute to
projects the following way:
e Create a fork of the project (fork button in Github) and clone it to your
machine (git clone {URL})
 When in the repo on your machine, create a new branch to develop
your feature on
 When you have all your commits made, push to your github fork

 Github will prompt you (due to pushing a new branch to a fork) if you'd
like to make a pull request

 Draft the pull request and wait for feedback from maintainers!

Demo time!!

We’ve been looking at the porcelain... It's time to look at the
plumbing :)

