
Bash Scripting &
Shortcuts

Command Piping & Chaining

Mostly a refresher, but we’ll demo these out

● Can send output using “>”

● Can receive input using “<”

● Can send error output using “2>”

● Pipe one command to another using “|”

● Run a 2nd command only if the 1st succeeds with “&&”

● Run a 2nd command only if the 1st fails with “||”

Common Keyboard Shortcuts

● C-C: Kill running program

● C-D: Send EOF indicator

● C-Z: Send running program to background

● C-L: Clear the terminal

● C-R: Search prior commands

Exclamation Marks!

Exclamation marks can be used for a variety of things:

● !n Repeat nth command from history

● !! Repeat previous command

● !word Repeat previous command starting with “word”

● !:n Repeat the nth argument from the prior command

● !:* Repeat all arguments from the prior command

Similar:

● ^this^that^: Re-execute the previous command, but replace “this” with “that”

Variables

x=10

echo x # Prints “x”

echo $x # Prints “10”

y=5

x=$y

echo $x # Prints “5”

Expressions

Various kinds of expressions in bash are represented by their enclosing paren type

● Double parens: integer math
○ Ex: ((5 + 5))
○ When using as args, put a dollar sign before expression

■ Ex: echo $((5 + 5)) # Prints 10
● Single square brackets: condition testing (usually used in control flow)

○ Ex: [$x -eq 5] checks if the variable “x” is equal to 5
○ There are also double square brackets, which are very similar
○ More choices than just “equal”, more on next slides

● Braces:
○ Used for expansion (more on next slides)
○ Used with dollar sign to reference variables
○ ex: location=RIT

echo ${location}lug # Prints RITlug

Bash Boolean “test” Operators

Bash doesn’t use “<”, “>”, etc. signs since those are reserved for IO, instead it uses:

● -lt <

● -gt >

● -le <=

● -ge >=

● -eq ==

● -ne !=

● -n (string is not empty)

● -z (string is empty)

● -f (file exists)

Braces can expand to make copies of a string:

 echo “Hello “{pete,repeat} # Prints “Hello pete Hello repeat”

They can also enumerate values:

 echo {1..10} # Prints “1 2 3 4 5 6 7 8 9 10”

Put these together and you get…

 echo "file"{1..10}".txt"
 file1.txt file2.txt … file10.txt

Braces Expansion

If statements

if condition

then

 cmd1

else

 cmd2

fi

While loops

while condition

do

 cmd1

 cmd2

 ...

end

For Loops (Bash Style)

for var in list

do

 cmd1

 cmd2

 ...

done

For Loops (C Style)

for ((initialize ; condition ; increment))

do

 cmd1

 cmd2

 ...

done

These have a weird syntax, see demo

Aliases

If you run the same command often, you can alias it to something easier

Ex:

alias push=’git push’
alias la=’ls -a’
alias rit=’ssh myname@glados.cs.rit.edu’ # There are better ways to do this
alias clean=’rm *.class *.out *.o &> /dev/null’

mailto:myname@glados.cs.rit.edu

Functions Syntax

Functions can do even more complex things

function() {

 cmd1

 cmd2

 ...

}

Notes about functions

● Parens are just syntax, no args go in there

● When calling the function, use its name only, no parens

● There is no automatic scoping, vars declared in functions are global

● Functions “return” the exit code of their last command

● Arguments
○ $1, $2, $3 are the 1st, 2nd, 3rd, etc. arguments

○ $# is the number of arguments

○ $* or $@ is all arguments (there are slight differences when interpreting these as strings)

● If trying to refer to a builtin command within a function, use the builtin keyword

Example Functions

cd () {

 builtin cd "$@"

 ls -A --color=auto

}

mkcd () {

 mkdir "$@" && cd "$@"

}

Writing a .sh file (bash script)

● First line is #! /bin/bash or #! /usr/bin/bash
○ Generally whatever comes after the shebang is used to interpret the file

● After saving the file, run chmod +x filename to make it executable

● Run it with ./filename.sh

That’s it, it’s actually quite straightforward once you have the hang of the scripting language

Miscellaneous Stuff

Sourcing:

. file_to_run # Commonly used for dotfiles

PS1 Special Variable: The string printed when prompting

You can use semicolons to put multiple commands on the same line

Thank You!

Lots of resources for learning:

● The obvious: man bash and help
● Bracket types reference:

https://www.assertnotmagic.com/2018/06/20/bash-brackets-quick-reference/

● Bash scripting operators: https://linuxconfig.org/bash-scripting-operators

● If statements: https://www.geeksforgeeks.org/bash-scripting-if-statement/

● Loops: https://linuxhandbook.com/bash-loops/

● Functions: https://linuxize.com/post/bash-functions/

● My personal dotfiles: https://github.com/jzaia18/dotfiles

https://www.assertnotmagic.com/2018/06/20/bash-brackets-quick-reference/
https://linuxconfig.org/bash-scripting-operators
https://www.geeksforgeeks.org/bash-scripting-if-statement/
https://linuxhandbook.com/bash-loops/
https://linuxize.com/post/bash-functions/
https://github.com/jzaia18/dotfiles

