The Rust Programming Language

Ben Goldberg

Rust

A Programming Language for the Future

Thank You

Thank you to rust-lang.org for providing content and examples!

https://rust-lang.org

Overview

» The sales pitch
» Use cases
» The Rust language

Other Languages

What's wrong with other languages?

Other Languages: Python

What's wrong with Python?

Other Languages: Python

» Slow
> Heavy
» Doesn't catch mistakes

Other Languages: C/C++

What's wrong with C/C++7

Other Languages: C/C++

Memory Leaks

Buffer overflow

Use after free

Double free

Null pointer dereference

Read uninitialized memory

Race conditions

No good build tools for large projects

vV VY VY VY VY VvYYy

Other Languages: C/C++

Home > Hacking > Vulnerabilities

What is the Heartbleed bug, how does it work
and how was it fixed?

The mistake that caused the Heartbleed vulnerability can be traced to a single line of code in
OpenSSL, an open source code library. Here's what you need to know now.

LA NN X

{ By Josh Fruhlinger
‘! = CSO | SEP 13,2017 2:53 AM PT

Heartbleed is a vulnerability that came to light in April of 2014; it allowed _

attackers unprecedented access to sensitive information, and it was present on
thousands of web servers, including those running major sites like Yahoo.

Heartbleed was caused by a flaw in OpenSSL, an open source code library that
implemented the Transport Layer Security (TLS) and Secure Sockets Layer
(SSL) protocols. In short, a malicious user could easily trick a vulnerable web
server into sending sensitive information, including usernames and passwords.

Figure 1: Heartbleed

Other Languages: C/C++

This simple link instantly crashes
Google Chrome

ﬁ http://a/
%%30%30

Figure 2: Chrome URL

Other Languages: C/C++
Apple Acknowledges Disastrous
iPhone Messages Bug, Suggests
This Temporary Fix

Amit Chowdhry Contributor ®
% Tech enthusiast, born in Ann Arbor and educated at Michigan State

Earlier this week, I wrote about how a new iOS bug emerged that enabled
iPhone users to crash another person’s iPhone by simply sending a text
message. The text message -- which simply says: effective. Power

5 alallui « Dy JU - causes the iPhone of the recipient to crash
continuously if the text is received while in lock screen mode. The
“Effective Power” bug (also known as Unicode of Death) only causes

issues between iPhone-to-iPhone communication.

Figure 3: Effective Power

Other Languages: C/C++

Search Results
There are 9731 CVE entries that match your search.

Name
CVE-2019-7154

CVE-2019-6977

CVE-2019-6439
& 0

Description
Theimaifinctonn tels/veemalecgoln Bineryen 136,22 e a heep e bifccverfo Lecais Emecrpien s mimisod, trgerk sn etror i cashent: JspreciprintaAm) I
emscripten-optimizer/simple_ast.h. A crafted input can cause. faults, leading to

A classic Stack-based bufer overiow exists I the zmLoadUser() funcion In 2m_useccpp of the zmu binaryin ZoneMinder Khrouqh 1.32.3, allowing an unauthenticated attacker to execute

code via a long username.

SN D L e S 0 S W 1L), L S B WS D 2 s, B) D S D2
re 7.3.1, has a heap-based buffer overflow. This can be exploited by an attacker who is able to trigger imagecolormatch calls with crafted image ata.

examp\es/ben:hmark/tls bench.c in a benchmark tool in wolfSSL through 3.15.7 has a heap-based bufer overflow.

A pointer overflow, with code execution, was discovered in ZeroMQ libzmq (aka OMQ) 4.2.x and 4.3.x before 4.3.1. A v2_decoder.cpp 2md::v2_decoder_t::size_ready integer overflow allows

an authenticated attacker to overwrite an arbitrary amount of bytes beyond the bounds of a buffer; which can be leveraged to run arbitrary code on the target system. The memory layout

allows the attacker to inject OS commands into a data structure located immediately after the problematic buffer (i.e., it s not necessary to use a typical buffer-overflow exploitation

technique that changes the flow of control).

An Issue was discovered in Anti-Grain Geometry (AGG) 2.4 as used In SVG++ (aka svgpp) 1.2.3. A heap-based buffer overflow bug in svgpp_agg_render may lead to code execution. In the

render_scanlines_aa_solid function, the blend_hline function is called repeatedly multiple times. blend_hline is equivalent to a loop containing write operations. Each call writes a piece of

heap data, and multiple calls overwrite the data in the heap.

A vulnerability in the vContainer of the Cisco SD-WAN Solution could allow an authenticated, remote attacker to cause a denial of service (DoS) condition and execute arbitrary code as the

root user. The vulnerability is due to improper bounds checking by the vContainer. An attacker could exploit this vulnerability by sending a malicious file to an affected vContainer instance. A

successful exploit could allow the attacker to cause a buffer overflow condition on the affected vContainer, which could result in a DoS condition that the attacker could use to execute

arbitrary code as the root user.

RIOT RIOT-OS version after commit 7af03ab624db0412c727eed9ab7630a528262fd3 contains a Buffer Overflow vulnerability in sock_dns, an implementation of the DNS protocol utilizing the

RIOT sock API that can result in Remote code executing. This attack appears to be exploitable via network connectivity.

7.

Figure 4: Buffer Overflow

What do we want?

We want to write performant and reliable programs easily and
productively

Comparison

C

C++

Go
Java

ML

()
v
[
1Y)
£
—
L
—
[}
o
~
o
[l
)
c
o
|9

Haskell

Safety

Figure 5: Rust vs other languages

What is Rust?

What does rust-lang.org say about Rust?

Performance

Rust is blazingly fast and memory-efficient: with no runtime or
garbage collector, it can power performance-critical services, run on
embedded devices, and easily integrate with other languages.

Reliability

Rust's rich type system and ownership model guarantee
memory-safety and thread-safety — and enable you to eliminate
many classes of bugs at compile-time.

Productivity

Rust has great documentation, a friendly compiler with useful error
messages, and top-notch tooling — an integrated package manager
and build tool, smart multi-editor support with auto-completion and
type inspections, an auto-formatter, and more.

Use Cases

Command line tools
Operating systems
Network services
Web Apps
Webassembly
Embedded

vV VvV VY VY VvYy

Things Written in Rust

Servo/parts of Firefox
Redox

Ripgrep

Dropbox’s storage backend
Many more. . .

vV vy VY VvYyy

The Language

Read the Rust Book
https://doc.rust-lang.org/book/
The Rust Playground

https://play.rust-lang.org/
Some examples from the rust book

Hello World

main() {
println! ("Hello, world!");

Immutable by default

Doesn't work

X = 5;
X = 3;

Works

Static Typing

x =77;

77,

Rust’'s Core Principle

Aliasing XOR Mutation

Ownership

» Each value in Rust has a variable that’s called its owner
» There can only be one owner at a time
» When the owner goes out of scope, the value will be dropped

main() {

x = 1;
{

y = 5;

println!(s X, YD
}
// Doesn't compile!!!!
println! (, X, V)

Another Example

hello(name:) {
println! ("Hello {}!", name);
// name is destroyed here

main() {
name = ::from("RIT LUG");
hello(name) ;
// Doesn't compile because name has been freed
println! ("Goodbye {}", name);

References and Borrowing

We can lend out ownership of a value with a reference

hello(name: &) {
println! (, name);
+
main() {
name = ::from()
hello(&name) ;
println! (, name);

Immutable vs Mutable References

// Doesn't compile
inc(x: &) {
x += 1;

inc(x: &) {

Immutable vs Mutable References cont.

Aliasing or Mutability

vl = 3;
rl = &vi;
r2 = &vi;

// Doesn't compile
v2 = 4;
rl =& v2;
r2 = & v2;

Statements vs Expressions

Statement
z=xt+y,;
Expression

{
zZ =X +Y;
zZ %y

Functions

hello() {
println! ();
}
add (x: , ¥) > {
X +y
}

Functions return the result of their last expression if it's not followed
by a semi-colon

Structures

Person {
name: ,
age: ,
}
person = Person {
name: ::from(
age: 32,

Methods

Point {
X: s

y: 132,

Point {
new(x: , Vi) => Point {
Point {
X,
v

Methods cont.

Point {
add (& , other: &Point) {
.X += other.x;
.y += other.y;

main() {
pl = Point::new(l, 2);
p2 = Point::new(2, 3);
// These are the same
pl.add(&p2);
Point: :add (& pl, &p2);

Strings

Two types of strings

&str
sl = ;

String
sl = ::from()
82 = .to_owned();

83 = ::from() .push_str();

Unit Type

() is the empty type
Functions that don’t specify a return type return ()

Enums

Direction {
Left,
Right,

IpAddr {
V4(u8, u8,
V6 (Vo

b

Matching

Coin {
Penny,
Nickel,
Dime,
Quarter,

value_in_cents(coin: Coin) ->
coin {
Coin::Penny => 1,
Coin: :Nickel => 5,
Coin: :Dime => 10,
Coin: :Quarter => 25,

Matching cont.

Coin {
Penny,
Nickel,
Dime,
Quarter,
}
is_a_penny(coin: Coin) ->
coin {
Coin::Penny => {
println!(
}
=>

Matching cont. 2

IpAddr {
V4(Iy b b)’
V6 (o

ip_addr {
IpAddr::V4(pl, p2, p3, pd) =>
println! (» Pl, p2, p3, pd),
IpAddr::V6(s) => println!(, S),

If-let

ip_addr {
IpAddr::V6(s) => println!(
- =0,

IpAddr::V6(s) = ip_addr {
println! (, 8);

, S),

Panic

main() {
panic! ("crash and burn");

main() {
v = vec![1, 2, 3];

v[99];

Result

<T, E> {
(T),
(E),

Result Ex.

std::fs::File;

main() {
f = File: :open(
f = f {

(file) => file,
(error) => {
panic! (

Result Ex. cont.

std::fs::File;

main() {

f = File: :open() .unwrap() ;

Propagate Errors
std::io;
std::io::Read;
std::fs::File;
read_username from file() -> < , io
f = File: :open();
f = f {
(file) => file,
(e) => (e),
g
s = :new();

f.read_to_string(& s) {
Q) = (s,
(e) => (e),

::Error> -

Propagate Errors cont.

std::io;
std::io::Read;
std::fs::File;

read username from_file() ->
f = File: :open(
s = ::new();
f.read_to_string(& s)7;
(s)

::Error> -

Option

<T> {
(T) ’

Generics

Point<T> {
x: T,
y: T,
}
<T> Point<T> {
x(&) —> &T {
& .X
}
}
main() {
p = Point { x: 5, y: 10 };
println! (, P-x0);

Traits

MakeSound {
make sound() ->

}
Dog;
MakeSound Dog {
make_sound() ->

::from(

Traits in Generics

are_equal<T: Eg>(x: T, y: T) ->
X==y

{

Borrow Checker

/7

x = 5; gy ===
r = &x; /7
} /) =t
/7
println!("r: {}", r); //

—_— — — — — — — +

Borrow Checker cont.

X = b;

r = &x;

println! ("r:

/) ———mmm——=
//
// —=t-= 'a
/7]

3 oy /70
/) -+

——_ — — — +

Lifetimes

longest(x: & , y: &) > & {
x.len() > y.len() {
X

} {
y

}

}

longest< =>(x: & , Vi &) > &
x.len() > y.len() {
X

} {
y

}

Lifetimes cont.

main() {
stringl = ::from();
{
string2 = 1 :from()
result = longest(stringl.as_str(), string2.as_:
println!(, result);
}

Lifetimes cont. 2

main() {
stringl = ::from();
result;
{
string2 = 1 :from()
result = longest(stringl.as_str(), string2.as_str(
}
println! (, result);

Modules

sound {
instrument {
clarinet() {
// Function body code goes here

main() {
// Absolute path
::sound: : instrument: :clarinet () ;

// Relative path
sound: :instrument: :clarinet () ;

Modules cont.

Point {

Syncronazation

The borrow checker also prevent shared mutablity between thread
and prevents data races
Rust also provides safe and effective syncronazation primatives

Cargo

The best build tool

» Build all of your code with out of the box
» Pull in all dependencies with no headaches

» It just works!

Resources

The Rust website: https://www.rust-lang.org/
The Rust book: https://doc.rust-lang.org/book/
The Rust playground https://play.rust-lang.org/
Rust by example:
https://github.com/rust-lang/rust-by-example

vV vyVvyy

https://www.rust-lang.org/
https://doc.rust-lang.org/book/
https://play.rust-lang.org/
https://github.com/rust-lang/rust-by-example

