
mapM_ putChar "Josh Bicking"

What’s Haskell?

● Haskell is a functional, lazy, pure language.

● Functional
○ Program logic is functions and data (and functions as data).

○ Focused on statelessness: instead of changing variables, you

call functions, which call other functions, and so forth.

● Lazy
○ Nothing is evaluated until it’s needed.

○ The value of unused variables isn’t calculated.

○ x = 1/0 won’t throw an error, unless you try to use x!

● Pure
○ Variable and function names can’t be overwritten once set.

○ x = x+1 makes no sense.

Try Haskell yourself!

● Any lines starting with λ> can be given to a Haskell interpreter.
○ You can follow along and try things yourself at https://repl.it/languages/haskell

■ Be sure you type into the interpreter (the terminal prompt). The left part is for writing executables.

○ If you’re feeling more adventurous, download and install Haskell through stack: https://www.haskellstack.org/

■ Once it’s complete, open an interpreter with stack ghci

https://repl.it/languages/haskell
https://www.haskellstack.org/

Syntax and Structure

Goodbye, S-expressions!

● Lisp haters rejoice: Haskell tries to avoid

those dreaded parentheses.

● Some functions, like +, have a special

prefix and infix notation.
○ Most just have a prefix notation.

○ Functions without a special infix

notation may be used infix by

surrounding them with backticks.

λ> 2 + 2

4

λ> (+) 2 2 -- prefix notation

4

λ> quot 33 5

6

λ> 33 `quot` 5 -- using functions as infix

6

Type Signatures

● Structure
○ 0 or more inputs that result in an output.

○ Can specify data types or type restrictions.

● Data types
○ Takes data of that input type.

● Type restrictions
○ Takes data that satisfies the category

restrictions placed on the input.

● Higher Order Functions
○ Functions given as data are subject to the same

type signatures.

λ> :t replicate

replicate :: Int -> a -> [a]

λ> :t (+)

(+) :: Num a => a -> a -> a

λ> :t (< 3)

(< 3) :: (Num a, Ord a) => a -> Bool

λ> :t map

map :: (a -> b) -> [a] -> [b]

Definitions

● Everything is a function. Mostly.
○ x is just data. However, its type

signature suggests it’s a function that

takes no arguments and returns a

number.

○ Functions and “data” are declared the

same way.

● Note: The interpreter will let you

“redefine” x. This is for convenience in

the interpreter, and not allowed in

compiled Haskell.
○ Also, x= x+1 still won’t work like it

does in other languages.

λ> x = 5

λ> :t x

x :: Num t => t

λ> squaredAdd a b = a^2 + b^2

λ> :t squaredAdd

squaredAdd :: Num a => a -> a -> a

λ> squaredAdd 2 3

13

Flow Control
● We have a familiar looking

if.

● Also have an interesting

case.
○ Uses Pattern Matching:

data matches a specific

structure.

● Conditionals and pattern

matching can also be used as

part of a function definition.

λ> if 5 == 6 then "foo" else "bar"

"bar"

λ> isEmpty l = case l of; [] -> True; otherwise -> False

λ> isEmpty [1,2,3]

False

λ> isEmpty []

True

-- Case statements look nicer outside of the interpreter.

isEmpty l =

 case l of

 [] -> True

 otherwise -> False

● Side note: Outside of the

interpreter, Haskell is

structured with indentation

and line breaks.

. and $

● Haskell lets you keep structure, without

throwing in tons of parentheses.
○ ($): Give precedence to the right of

the $.

○ (.): Chain functions together: take

the output of the right, and apply it as

an argument to the left.

■ Meant to look like the

mathematical function

composition operator, ∘.

a b c d e -- "Call function a, with arguments b, c,

d, e"

a b (c d e) -- "Call function a, with arguments b,

and the result of calling c with arguments d, e."

a b $ c d e -- The same as above.

a (b (c d)) -- "Call c with arguments d, e. Apply the

result of c to b, then apply the result of b to a.

(a . b . c) d -- The same as above.

a . b . c $ d -- The same as above.

Why use Haskell?

The Theory Underneath

● Haskell is based off some really cool constructs!

○ Category Theory

○ Theoretical Computer Science

○ Programming language theory

● I won’t go too deep into these, just why they help Haskell do what it can do.
○ The theoretical constructs give Haskell a lot of practical advantages.

Strict, extensive type system

● No casting
○ Turning an Integer into a Double requires a

function that takes an Integer and returns a

Double.

● Typeclasses are (optionally) inferred by the

compiler.
○ Typeclass is determined by how the data is

used.

λ> fun1 a = a

λ> :t fun1

fun1 :: p -> p

λ> fun2 a b = a < b

λ> :t fun2

fun2 :: Ord a => a -> a -> Bool

λ> fun3 a = a < 3

λ> :t fun3

fun3 :: (Ord a, Num a) => a -> Bool

Referential Transparency

● You may substitute the right hand side of a

declaration, in any context.
○ The meaning doesn’t change.

● Immutability guarantees a function’s result

is determined only by its input.
○ No concept of state!

λ> f a b = a + b

λ> x = 3

λ> y = 5

λ> f x y

8

λ> f 3 5 -- Substitute x and y

8

λ> x + y -- Substitute f

8

● Cool use case: “Hotswapping Haskell” for

Facebook’s spam filter
○ Functions are updated on the fly.

■ New objects are swapped in.

■ Old objects are marked for garbage

collection.

Parallelism is Easy!

● Functions don’t modify each other, so we

can run them simultaneously without

worrying.
○ par a b lets you evaluate a and b

simultaneously.

import Control.Parallel (par)

factorial n = product [1..n]

let

 x = factorial 20000

 y = factorial 30000

in

 par x (par y (x - y))

λ> import Control.Parallel (par)

λ> factorial n = product [1..n]

λ> let { x = factorial 20000; y = factorial 30000 } in par x (par y (x - y))

For those of you in an interpreter (this probably won’t work on repl.it):

Laziness: It’s a good thing

● Elements that are never used are never

evaluated.

● Declare a huge, or infinite list, and take what

you need from it.
○ A program to solve Sudoku, by Richard Bird

■ sudoku :: Board -> [Board]
■ For any board configuration, compute

all possible ways to fill it.

λ> x = [1..]

λ> x !! 10

11

λ> take 5 x

[1,2,3,4,5]

λ> show x -- This would loop forever!

Why use Haskell?

A program becomes a number of side-effect free,

strongly typed functions.

This leaves very little room for runtime errors.

A Touch of Theory: The Type System

Duck Typing on Steroids

● Duck typing: “If it waddles and quacks like a duck, then it’s

probably a duck.”
○ The type of data is inferred: it doesn’t have to be specified.

● Let’s say we have a Duck d. It can waddle.
○ Python

■ d.waddle() - ✓

■ d.ribbit() - Runtime error

○ Haskell

■ d is a Duck data type, and Duck is part of the Waddles

typeclass. - ✓

■ d is a Duck data type, and Duck is not part of the

Ribbits typeclass. - Compile time error.

>>> x = 3

>>> type(x)

<class 'int'>

>>> x = 3.0

>>> type(x)

<class 'float'>

Python also uses “duck typing”.

Category Theory in the Type System
Because there aren’t any papers on Duck Typing Theory.

● If a data type can implement what’s necessary

to be in a typeclass, then it belongs to that

typeclass.
○ In Haskell, typeclasses are defined with class

(not to be confused with a Java class).

○ To be in Eq, a data type must implement

(==) and (/=), and their results must not be

equal to each other.

● Offers data encapsulation and polymorphism

without an OOP model.

class Eq a where

 (==), (/=) :: a -> a -> Bool

 -- Minimal complete definition:

 -- (==) or (/=)

 x /= y = not (x == y)

 x == y = not (x /= y)

Something is missing...

I’ve left out an essential part of learning a new

programming language.

Printing requires IO, and IO is a side effect: it

changes the state of a system.

Haskell abstracts away side effects through

monads.

module Main where

main :: IO ()

main = putStrLn "Hello world!"

Monads: Bundling State

Let’s look at some
JavaScript

● This code is riddled with null checks.
○ Is there any way we can remove them?

● Haskell has a Maybe data type.

var person = {

 "name":"Homer Simpson",

 "address": {

 "street":"123 Fake St.",

 "city":"Springfield"

 }

};

if (person != null && person["address"] != null) {

 var state = person["address"]["state"];

 if (state != null) {

 console.log(state);

 }

 else {

 console.log("State unknown");

 }

}

data Maybe t = Just t | Nothing

● A Maybe has some value wrapped in a

Just, or it has no value, Nothing.

Maybe in JavaScript

● Now we have a unit function
○ Returns a Nothing object if given null or

undefined.

○ Returns a Just function if given a value,

which returns the original value.

var Nothing = {};

var Maybe = function(value) {

 var Just = function(value) {

 return function() {

 return value;

 };

 };

 if (typeof value === 'undefined'

 || value === null)

 return Nothing;

 return Just(value);

};

Maybe some
Examples
Maybe(null) == Nothing; // true

typeof Maybe(null); // 'object'

Maybe('foo') == Nothing; // false

Maybe('foo')(); // 'foo'

typeof Maybe('foo'); // 'function'

var Nothing = {};

var Maybe = function(value) {

 var Just = function(value) {

 return function() {

 return value;

 };

 };

 if (typeof value === 'undefined'

 || value === null)

 return Nothing;

 return Just(value);

};

And just like that...

● This code is riddled with Nothing
checks instead.

○ Yay?

if (Maybe(person) != Nothing &&

 Maybe(person["address"]) != Nothing) {

 var state = person["address"]["state"];

 if (Maybe(state) != Nothing) {

 console.log(state);

 }

 else {

 console.log("State unknown");

 }

}

Back to function
composition

● What if we had a functional way to do what

&& is doing, but with Nothings?
○ If any result is Nothing, then stop

computing things and just return

Nothing.

// For Nothing

bind: function(fn) { return Nothing; }

// For Just value

bind: function(fn) {

 return Maybe(fn.call(this, value));

 }

● Introducing bind

○ If we already have a Nothing, then

return Nothing.

○ If we have a Just value, output is

determined by the given value.

bind() in action

var address = Maybe(person).bind(

 function(p) {

 return p["address"];

 });

address === Nothing // false

var fake_address = Nothing.bind(

 function(p) {

 return p["address"];

 });

fake_address === Nothing // true

var state = Maybe(person).bind(function(p) {

 return p["address"];

}).bind(function(a) {

 return a["state"];

});

state === Nothing // true

// For Nothing

bind: function(fn) { return Nothing; }

// For Just value

bind: function(fn) {

 return Maybe(fn.call(this, value));

 }

Doing something with the result

// For Nothing

maybe: function(def, fn) {

 return def;

 }

// For Just value

maybe: function(def, fn) {

 return fn.call(this, value);

 }

● If the result is Nothing, we should have some

sort of fallback or default behavior.

● Otherwise, we should do something with its

contents.
○ Extract value from Just value, and apply

it to fn.

○ If we just want to print, we can give the identity

function as fn.

Maybe some more examples

Maybe(3).maybe("not a number", function(a) { return a+2; }); // 5

Maybe(null).maybe("not a number", function(a) { return a+2; }); // "not

a number"

// Combining two "Maybe"s isn't the prettiest with this implementation,

but it's possible.

Maybe(3).maybe("not a number", function(a){

 return Maybe(5).maybe("not a number", function(b){

 return a+b})}); // 8

Why do we
have to call
maybe()
twice?

Maybe we have a solution

console.log(Maybe(person).bind(function(p) {

 return p["address"];

}).bind(function(a) {

 return a["state"];

}).maybe("State unknown", function(s) {

 return s;

}));

● The result of each bind function is passed

forward.
○ If we have something at the maybe(), we print

it.

○ Otherwise, we print the default.

The entire
Maybe
implementation

var Nothing = {

 bind: function(fn) { return Nothing; },

 maybe: function(def, fn) {

 return def;

 }

};

var Maybe = function(value) {

 var Just = function(value) {

 return {

 bind: function(fn) { return Maybe(fn.call(this, value)); },

 maybe: function(def, fn) {

 return fn.call(this, value);

 }

 };

 };

 if (typeof value === 'undefined' || value === null)

 return Nothing;

 return Just(value);

};

Maybe we have a
monad

λ> :t (>>=)

(>>=) :: Monad m => m a -> (a -> m b) -> m b

λ> :t return

return :: Monad m => a -> m a

λ> Just 3 >>= \x -> return $ (+) 1 x

Just 4

λ> Nothing >>= \x -> return $ (+) 1 x

Nothing

● Monads allow “packaging” of data.

○ Done in such a way that allows “chainable”

usage.

○ Kind of like putting a value in a box, giving it to

someone to open, and they place it in another

box.

■ However, there’s rules stating how

functions should operate when the box

is opened in a particular way.

λ> return 3 :: [Int]

[3]

λ> [] >>= show

""

λ> [1,2,3,4,5] >>= show

"12345"

Our solution in Haskell
λ> data Person = Person { name :: String , addr :: Maybe String}

λ> buddy = (Just (Person "Buddy" (Just "123 Moon Ave")))

λ> putStrLn $ maybe "No addr" id $ buddy >>= addr

123 Moon Ave

Person :: String -> Maybe String -> Person

Just :: a -> Maybe a

putStrLn :: String -> IO ()

maybe :: b -> (a -> b) -> Maybe a -> b

id :: a -> a

● To make things easier to follow, we
won't nest an Address data type.

● Both the Person and their address
are optional.

Relevant data types:

Monads, this time with sheep

type Sheep = ...

father :: Sheep -> Maybe Sheep

father s = ...

mother :: Sheep -> Maybe Sheep

mother s = ...

● We have some Sheep datatype. We also have

a sheep family tree database.
○ father returns the father of the sheep, if we

know the father.

○ mother returns the mother of the sheep, if we

know the mother.

How far can we
go?

maternalGrandfather :: Sheep -> Maybe Sheep

maternalGrandfather s =

 case (mother s) of

 Nothing -> Nothing

 Just m -> father m

mothersPaternalGrandfather :: Sheep -> Maybe Sheep

mothersPaternalGrandfather s =

 case (mother s) of

 Nothing -> Nothing

 Just m -> case (father m) of

 Nothing -> Nothing

 Just gf -> father gf

● Going two generations isn’t too

bad.

● However, it quickly gets ugly.

● We don’t need all these checks: a

Nothing at any step results in a

Nothing.

Using >>=

maternalGrandfather :: Sheep -> Maybe Sheep

maternalGrandfather s = mother s >>= father

mothersPaternalGrandfather :: Sheep -> Maybe Sheep

mothersPaternalGrandfather s = mother s >>= father >>= father

● Binding results together

makes for a much cleaner

solution.

● Any Nothing along the

chain of binds will result in

a Nothing being returned.

Monads and Lists

λ> :t replicate

replicate :: Int -> a -> [a]

λ> ["sheep"] >>= replicate 3

["sheep","sheep","sheep"]

λ> [1,2,3] >>= (\x -> return $ 3 + x)

[4,5,6]

● Many structures in Haskell are represented

as monads, to allow for composition.
○ Lists

■ Could be the [], [a], [a,a]...

■ We can operate on what’s inside

them in a similar way, if we want.

■ We can also think of it as

“extracting” a value from its “list”

context.

● Bind works differently for different monads,

but produces the same result.
○ A value is extracted from the monad, and

then placed in it again.

(>>=) :: [a] -> (a -> [b]) -> [b] -- In the

case of the List monad.

lst >>= f = concat (map f lst)

exp = x >>= (f1 >>= f2) >>= f3

-- At each point, the exp is equal to:

exp = closure >>= continuation

Monads, Haskell, and sweet flow control

● Haskell gives the programmer more control

over state, and composition of state.
○ Bundling state into monads means it changes in

a trackable, predictable way.

○ Structure hands itself nicely to using closures

and continuations.

● Continuation: representation of control flow

● Closure: a function with contextual

information, given from its state.

○ Some value with context is fed into an

environment that requires that value to

complete.

○ We can see these values at each step.

■ Check them for validity.

■ Record them, allowing us to track state

and undo that state, if necessary.

References and Further Information
● Free resource (plenty of introductions for concepts): https://en.wikibooks.org/wiki/Haskell

● Much more comical, free resource: http://learnyouahaskell.com

● Hoogle: A search engine for functions and type signatures: https://www.haskell.org/hoogle

● Building a small parser: https://wiki.haskell.org/Parsing_a_simple_imperative_language

● Facebook’s Haskell spam filter:

https://code.facebook.com/posts/745068642270222/fighting-spam-with-haskell

https://simonmar.github.io/posts/2017-10-17-hotswapping-haskell.html

● Maybe monad in Javascript: http://sean.voisen.org/blog/2013/10/intro-monads-maybe

● Building a Sudoku solver: http://www.cs.tufts.edu/~nr/cs257/archive/richard-bird/sudoku.pdf

● xmonad, a tiling window manager written and configured in Haskell: http://xmonad.org

● Backtracking with monads:

https://www.schoolofhaskell.com/user/agocorona/the-hardworking-programmer-ii-practical-backtrack

ing-to-undo-actions

https://en.wikibooks.org/wiki/Haskell
http://learnyouahaskell.com/
https://www.haskell.org/hoogle/
https://wiki.haskell.org/Parsing_a_simple_imperative_language
https://code.facebook.com/posts/745068642270222/fighting-spam-with-haskell/
https://simonmar.github.io/posts/2017-10-17-hotswapping-haskell.html
http://sean.voisen.org/blog/2013/10/intro-monads-maybe/
http://www.cs.tufts.edu/~nr/cs257/archive/richard-bird/sudoku.pdf
http://xmonad.org/
https://www.schoolofhaskell.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.schoolofhaskell.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions

