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What’s Haskell?

● Haskell is a functional, lazy, pure language.

● Functional
○ Program logic is functions and data (and functions as data).

○ Focused on statelessness: instead of changing variables, you 

call functions, which call other functions, and so forth.

● Lazy
○ Nothing is evaluated until it’s needed.

○ The value of unused variables isn’t calculated.

○ x = 1/0 won’t throw an error, unless you try to use x!

● Pure
○ Variable and function names can’t be overwritten once set.

○ x = x+1 makes no sense.



Try Haskell yourself!

● Any lines starting with λ> can be given to a Haskell interpreter.
○ You can follow along and try things yourself at https://repl.it/languages/haskell

■ Be sure you type into the interpreter (the terminal prompt). The left part is for writing executables.

○ If you’re feeling more adventurous, download and install Haskell through stack: https://www.haskellstack.org/

■ Once it’s complete, open an interpreter with stack ghci

https://repl.it/languages/haskell
https://www.haskellstack.org/


Syntax and Structure



Goodbye, S-expressions!

● Lisp haters rejoice: Haskell tries to avoid 

those dreaded parentheses.

● Some functions, like +, have a special 

prefix and infix notation.
○ Most just have a prefix notation.

○ Functions without a special infix 

notation may be used infix by 

surrounding them with backticks.

λ> 2 + 2

4

λ> (+) 2 2  -- prefix notation

4

λ> quot 33 5

6

λ> 33 `quot` 5  -- using functions as infix

6



Type Signatures

● Structure
○ 0 or more inputs that result in an output.

○ Can specify data types or type restrictions. 

● Data types
○ Takes data of that input type.

● Type restrictions
○ Takes data that satisfies the category 

restrictions placed on the input.

● Higher Order Functions
○ Functions given as data are subject to the same 

type signatures.

λ> :t replicate

replicate :: Int -> a -> [a]

λ> :t (+)

(+) :: Num a => a -> a -> a

λ> :t (< 3)

(< 3) :: (Num a, Ord a) => a -> Bool

λ> :t map

map :: (a -> b) -> [a] -> [b]



Definitions

● Everything is a function. Mostly.
○ x is just data. However, its type 

signature suggests it’s a function that 

takes no arguments and returns a 

number.

○ Functions and “data” are declared the 

same way.

● Note: The interpreter will let you 

“redefine” x. This is for convenience in 

the interpreter, and not allowed in 

compiled Haskell.
○ Also, x= x+1 still won’t work like it 

does in other languages.

λ> x = 5

λ> :t x

x :: Num t => t

λ> squaredAdd a b = a^2 + b^2

λ> :t squaredAdd 

squaredAdd :: Num a => a -> a -> a

λ> squaredAdd 2 3

13



Flow Control
● We have a familiar looking 

if.

● Also have an interesting 

case.
○ Uses Pattern Matching: 

data matches a specific 

structure.

● Conditionals and pattern 

matching can also be used as 

part of a function definition.

λ> if 5 == 6 then "foo" else "bar"

"bar"

λ> isEmpty l = case l of; [] -> True; otherwise -> False

λ> isEmpty [1,2,3]

False

λ> isEmpty []

True

-- Case statements look nicer outside of the interpreter.

isEmpty l =

  case l of

    [] -> True

    otherwise -> False

● Side note: Outside of the 

interpreter, Haskell is 

structured with indentation 

and line breaks.



. and $

● Haskell lets you keep structure, without 

throwing in tons of parentheses.
○ ($): Give precedence to the right of 

the $.

○ (.): Chain functions together: take 

the output of the right, and apply it as 

an argument to the left.

■ Meant to look like the 

mathematical function 

composition operator, ∘.

a b c d e  -- "Call function a, with arguments b, c, 

d, e"

a b (c d e)  -- "Call function a, with arguments b, 

and the result of calling c with arguments d, e."

a b $ c d e  -- The same as above.

a (b (c d))  -- "Call c with arguments d, e. Apply the 

result of c to b, then apply the result of b to a.

(a . b . c) d  -- The same as above.

a . b . c $ d  -- The same as above.



Why use Haskell?



The Theory Underneath

● Haskell is based off some really cool constructs!

○ Category Theory

○ Theoretical Computer Science

○ Programming language theory

● I won’t go too deep into these, just why they help Haskell do what it can do.
○ The theoretical constructs give Haskell a lot of practical advantages.



Strict, extensive type system

● No casting
○ Turning an Integer into a Double requires a 

function that takes an Integer and returns a 

Double.

● Typeclasses are (optionally) inferred by the 

compiler.
○ Typeclass is determined by how the data is 

used.

λ> fun1 a = a

λ> :t fun1

fun1 :: p -> p

λ> fun2 a b = a < b

λ> :t fun2

fun2 :: Ord a => a -> a -> Bool

λ> fun3 a = a < 3

λ> :t fun3

fun3 :: (Ord a, Num a) => a -> Bool



Referential Transparency

● You may substitute the right hand side of a 

declaration, in any context.
○ The meaning doesn’t change.

● Immutability guarantees a function’s result 

is determined only by its input.
○ No concept of state!

λ> f a b = a + b

λ> x = 3

λ> y = 5

λ> f x y

8

λ> f 3 5  -- Substitute x and y

8

λ> x + y  -- Substitute f

8

● Cool use case: “Hotswapping Haskell” for 

Facebook’s spam filter
○ Functions are updated on the fly.

■ New objects are swapped in.

■ Old objects are marked for garbage 

collection.



Parallelism is Easy!

● Functions don’t modify each other, so we 

can run them simultaneously without 

worrying.
○ par a b lets you evaluate a and b 

simultaneously.

import Control.Parallel (par)

factorial n = product [1..n]

let

  x = factorial 20000

  y = factorial 30000

in

  par x (par y (x - y))

λ> import Control.Parallel (par)

λ> factorial n = product [1..n]

λ> let { x = factorial 20000; y = factorial 30000 } in par x (par y (x - y))

For those of you in an interpreter (this probably won’t work on repl.it):



Laziness: It’s a good thing

● Elements that are never used are never 

evaluated.

● Declare a huge, or infinite list, and take what 

you need from it.
○ A program to solve Sudoku, by Richard Bird

■ sudoku :: Board -> [Board]
■ For any board configuration, compute 

all possible ways to fill it.

λ> x = [1..]

λ> x !! 10

11

λ> take 5 x

[1,2,3,4,5]

λ> show x -- This would loop forever!



Why use Haskell?

A program becomes a number of side-effect free, 

strongly typed functions.

This leaves very little room for runtime errors.



A Touch of Theory: The Type System



Duck Typing on Steroids

● Duck typing: “If it waddles and quacks like a duck, then it’s 

probably a duck.”
○ The type of data is inferred: it doesn’t have to be specified.

● Let’s say we have a Duck d. It can waddle.
○ Python

■ d.waddle() - ✓

■ d.ribbit() - Runtime error

○ Haskell

■ d is a Duck data type, and Duck is part of the Waddles 

typeclass. - ✓

■ d is a Duck data type, and Duck is not part of the 

Ribbits typeclass. - Compile time error.

>>> x = 3

>>> type(x)

<class 'int'>

>>> x = 3.0

>>> type(x)

<class 'float'>

Python also uses “duck typing”.



Category Theory in the Type System
Because there aren’t any papers on Duck Typing Theory.

● If a data type can implement what’s necessary 

to be in a typeclass, then it belongs to that 

typeclass.
○ In Haskell, typeclasses are defined with class 

(not to be confused with a Java class).

○ To be in Eq, a data type must implement 

(==) and (/=), and their results must not be 

equal to each other.

● Offers data encapsulation and polymorphism 

without an OOP model.

class  Eq a  where

   (==), (/=) :: a -> a -> Bool

       -- Minimal complete definition:

       --      (==) or (/=)

   x /= y     =  not (x == y)

   x == y     =  not (x /= y)



Something is missing...

I’ve left out an essential part of learning a new 

programming language.

Printing requires IO, and IO is a side effect: it 

changes the state of a system.

Haskell abstracts away side effects through 

monads.

module Main where

main :: IO ()

main = putStrLn "Hello world!"



Monads: Bundling State



Let’s look at some 
JavaScript

● This code is riddled with null checks.
○ Is there any way we can remove them?

● Haskell has a Maybe data type.

var person = {

    "name":"Homer Simpson", 

    "address": {

        "street":"123 Fake St.",

        "city":"Springfield"

    }

};

if (person != null && person["address"] != null) {

    var state = person["address"]["state"];

    if (state != null) {

        console.log(state);

    }

    else {

        console.log("State unknown");

    }

}

data Maybe t = Just t | Nothing

● A Maybe has some value wrapped in a 

Just, or it has no value, Nothing.



Maybe in JavaScript

● Now we have a unit function
○ Returns a Nothing object if given null or 

undefined.

○ Returns a Just function if given a value, 

which returns the original value.

var Nothing = {};

var Maybe = function(value) {

  var Just = function(value) {

    return function() {

      return value;

    };

  };

  if (typeof value === 'undefined'

      || value === null)

    return Nothing;

  return Just(value);

};



Maybe some 
Examples
Maybe(null) == Nothing;  // true

typeof Maybe(null);  // 'object'

Maybe('foo') == Nothing;  // false

Maybe('foo')();  // 'foo'

typeof Maybe('foo');  // 'function'

var Nothing = {};

var Maybe = function(value) {

  var Just = function(value) {

    return function() {

      return value;

    };

  };

  if (typeof value === 'undefined'

      || value === null)

    return Nothing;

  return Just(value);

};



And just like that...

● This code is riddled with Nothing 
checks instead.

○ Yay?

if (Maybe(person) != Nothing &&

    Maybe(person["address"]) != Nothing) {

  var state = person["address"]["state"];

  if (Maybe(state) != Nothing) {

    console.log(state);

  }

  else {

    console.log("State unknown");

  }

}



Back to function 
composition

● What if we had a functional way to do what 

&& is doing, but with Nothings?
○ If any result is Nothing, then stop 

computing things and just return 

Nothing.

// For Nothing

bind: function(fn) { return Nothing; }

// For Just value

bind: function(fn) {

        return Maybe(fn.call(this, value));

      }

● Introducing bind

○ If we already have a Nothing, then 

return Nothing.

○ If we have a Just value, output is 

determined by the given value.



bind() in action

var address = Maybe(person).bind(

  function(p) {

    return p["address"];

  });

address === Nothing  // false

var fake_address = Nothing.bind(

  function(p) {

    return p["address"];

  });

fake_address === Nothing  // true

var state = Maybe(person).bind(function(p) { 

  return p["address"];

}).bind(function(a) {

  return a["state"];

});

state === Nothing  // true

// For Nothing

bind: function(fn) { return Nothing; }

// For Just value

bind: function(fn) {

        return Maybe(fn.call(this, value));

      }



Doing something with the result

// For Nothing

maybe: function(def, fn) {

      return def;

    }

// For Just value

maybe: function(def, fn) {

        return fn.call(this, value);

       }

● If the result is Nothing, we should have some 

sort of fallback or default behavior.

● Otherwise,  we should do something with its 

contents.
○ Extract value from Just value, and apply 

it to fn.

○ If we just want to print, we can give the identity 

function as fn.



Maybe some more examples

Maybe(3).maybe("not a number", function(a) { return a+2; });  // 5

Maybe(null).maybe("not a number", function(a) { return a+2; });  // "not 

a number"

// Combining two "Maybe"s isn't the prettiest with this implementation, 

but it's possible.

Maybe(3).maybe("not a number", function(a){

  return Maybe(5).maybe("not a number", function(b){

    return a+b})});  // 8

Why do we 
have to call 
maybe() 
twice?



Maybe we have a solution

console.log(Maybe(person).bind(function(p) { 

  return p["address"];

}).bind(function(a) {

  return a["state"];

}).maybe("State unknown", function(s) { 

  return s; 

}));

● The result of each bind function is passed 

forward.
○ If we have something at the maybe(), we print 

it. 

○ Otherwise, we print the default.



The entire 
Maybe 
implementation

var Nothing = {

  bind: function(fn) { return Nothing; },

  maybe: function(def, fn) {

    return def;

  }

};

var Maybe = function(value) {

  var Just = function(value) {

    return {

      bind: function(fn) { return Maybe(fn.call(this, value)); },

      maybe: function(def, fn) {

        return fn.call(this, value);

      }

    };

  };

  if (typeof value === 'undefined' || value === null)

    return Nothing;

  return Just(value);

};



Maybe we have a 
monad

λ> :t (>>=)

(>>=) :: Monad m => m a -> (a -> m b) -> m b

λ> :t return

return :: Monad m => a -> m a

λ> Just 3 >>= \x -> return $ (+) 1 x

Just 4

λ> Nothing >>= \x -> return $ (+) 1 x

Nothing

● Monads allow “packaging” of data.

○ Done in such a way that allows “chainable” 

usage.

○ Kind of like putting a value in a box, giving it to 

someone to open, and they place it in another 

box.

■ However, there’s rules stating how 

functions should operate when the box 

is opened in a particular way.

λ> return 3 :: [Int]

[3]

λ> [] >>= show

""

λ> [1,2,3,4,5] >>= show

"12345"



Our solution in Haskell
λ> data Person = Person { name :: String , addr :: Maybe String}  

λ> buddy = (Just (Person "Buddy" (Just "123 Moon Ave")))  

λ> putStrLn $ maybe "No addr" id $ buddy >>= addr

123 Moon Ave

Person :: String -> Maybe String -> Person

Just :: a -> Maybe a

putStrLn :: String -> IO ()

maybe :: b -> (a -> b) -> Maybe a -> b

id :: a -> a

● To make things easier to follow, we 
won't nest an Address data type.

● Both the Person and their address 
are optional.

Relevant data types:



Monads, this time with sheep

type Sheep = ...

 

father :: Sheep -> Maybe Sheep

father s = ...

 

mother :: Sheep -> Maybe Sheep

mother s = ...

● We have some Sheep datatype. We also have 

a sheep family tree database.
○ father returns the father of the sheep, if we 

know the father.

○ mother returns the mother of the sheep, if we 

know the mother.



How far can we 
go?

maternalGrandfather :: Sheep -> Maybe Sheep

maternalGrandfather s =

  case (mother s) of

    Nothing -> Nothing

    Just m  -> father m

mothersPaternalGrandfather :: Sheep -> Maybe Sheep

mothersPaternalGrandfather s =

  case (mother s) of

    Nothing -> Nothing

    Just m  -> case (father m) of

      Nothing -> Nothing

      Just gf -> father gf

● Going two generations isn’t too 

bad.

● However, it quickly gets ugly.

● We don’t need all these checks: a 

Nothing at any step results in a 

Nothing.



Using >>=

maternalGrandfather :: Sheep -> Maybe Sheep

maternalGrandfather s = mother s >>= father

mothersPaternalGrandfather :: Sheep -> Maybe Sheep

mothersPaternalGrandfather s = mother s >>= father >>= father

● Binding results together 

makes for a much cleaner 

solution.

● Any Nothing along the 

chain of binds will result in 

a Nothing being returned.



Monads and Lists

λ> :t replicate

replicate :: Int -> a -> [a]

λ> ["sheep"] >>= replicate 3

["sheep","sheep","sheep"]

λ> [1,2,3] >>= (\x -> return $ 3 + x)

[4,5,6]

● Many structures in Haskell are represented 

as monads, to allow for composition.
○ Lists

■ Could be the [], [a], [a,a]...

■ We can operate on what’s inside 

them in a similar way, if we want.

■ We can also think of it as 

“extracting” a value from its “list” 

context.

● Bind works differently for different monads, 

but produces the same result.
○ A value is extracted from the monad, and 

then placed in it again.

(>>=) :: [a] -> (a -> [b]) -> [b]  -- In the 

case of the List monad.

lst >>= f = concat (map f lst)



exp = x >>= (f1 >>= f2) >>= f3 

-- At each point, the exp is equal to:

exp = closure >>= continuation

Monads, Haskell, and sweet flow control

● Haskell gives the programmer more control 

over state, and composition of state.
○ Bundling state into monads means it changes in 

a trackable, predictable way.

○ Structure hands itself nicely to using closures 

and continuations.

● Continuation: representation of control flow

● Closure: a function with contextual 

information, given from its state.

○ Some value with context is fed into an 

environment that requires that value to 

complete. 

○ We can see these values at each step.

■ Check them for validity.

■ Record them, allowing us to track state 

and undo that state, if necessary.
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