
Overview of Distributed
Computing
signin.ritlug.com

(pray it works!)



Summary ● Data crunching 
(supercomputers)

● Rendering (render farms, 
Hollywood, Pixar, etc.)

● High availability (failover of 
things like web apps)

Data crucnching is like the simulations NASA supercomputers do. 
https://www.youtube.com/watch?v=3RqF8m65r8g
Article on Blender’s render farm & Big Buck Bunny - interesting read: 
http://bbb3d.renderfarming.net/explore.html
The Blender render farm uses BURP, which is based on BOINC (next slide)
High availability is more like a mainframe sometimes. 
https://www.youtube.com/watch?v=ximv-PwAKnc

https://www.youtube.com/watch?v=3RqF8m65r8g
http://bbb3d.renderfarming.net/explore.html
https://www.youtube.com/watch?v=ximv-PwAKnc&t=318s


Data Crunching

● What supercomputers for research usually do
● Can include simulations
● Examples:

○ BOINC
■ SETI@HOME (Search for ExtraTerrestrial Intelligence)
■ Einstein@home (LIGO, the gravitational waves thing)
■ LHC@home (CERN’s supercollider)

○ Folding@Home (Protein folding, mostly medical research use)
○ You can participate in these examples too!

https://boinc.berkeley.edu/
http://folding.stanford.edu/

https://boinc.berkeley.edu/
http://folding.stanford.edu/


Data Crunching: Process

1. Computer joins the cluster/project
a. Note: “Cluster” means “can be viewed

as a single entity”

2. Computer gets sent a workload
3. Computer does the work
4. Computer sends back the result
5. The controlling server may (cross-)validate the result
6. Public projects frequently have a points system to reward contributors

a. Points usually based around computational complexity

Graphics from BOINC’s page on how it works
Cross-validation needed b/c of bad actors & different hardware can get different 
results (for example CPUs & GPUs do math slightly differently)



Real Time Computing: Networks

This qualifies as distributed computing:

Router (technically 
a computer)

Computer A Computer B

Multiple computers, networked (2 is still multiple)



...or this:

Computer A Computer B

You don’t actually need a router/similar for networking, you can make it static



...but this is more interesting:

Internet

Skynet

Modem
Router

Router

NIDS

NIDS

S
w
i
t
c
h

Client 1

Client 2

Client n

NAS

AD1

AD2

CEO SmartTV

Mail
Intranet

Security

Easily hackable 
important stuff

Camera

Door



So, how did we 
land here and what 
did it take?



How? Process pt. 1: Manual

Take (a few) computer(s) and configure them by hand

Pros:

● Good for learning

Cons:

● Bad for any real use in most circumstances

Quick, move on to fun stuff



How? Process pt. 2a: Semi-automatic

Set it up on one computer & clone (“imaging” - see also: Ghost(script), PXE)

Pros:

● Uniform, deployable

Cons:

● Can’t manage w/o re-deploying

Quick, move on to fun stuff
PXE is over the network booting, which can be used to image the machine (since the 
disk is not being used by the OS, unlike with a normal boot)
https://en.wikipedia.org/wiki/Preboot_Execution_Environment

https://en.wikipedia.org/wiki/Preboot_Execution_Environment#/media/File:PXE_diagram.png


How? Process pt. 2b: Semi-automatic

Download & run a script (see also: setup.sh, Ansible, Chef, Puppet, Windows AD 
(GPO))

Pros:

● Uniform, easy to re-deploy

Cons:

● Still manual work

Quick, move on to fun stuff

We use Ansible in the TigerOS infrastructure



How? Process pt. 3: Automatic

Put management stuff in image

Pros:

● Manageable & redeployable
● Good for computer labs

Cons:

● Not most efficient use of resources

Quick, move on to fun stuff

RIT’s labs are set up like this.



How? Process pt. 4: 
Virtualization

Run virtual computers (“virtual 
machines” aka VMs) on the same 
hardware



4.0 Virtualization Types

As you can see, on a bare metal HV the HV is the Host OS (or heavily integrated at a 
very low level (inc. kernel)), whereas the hosted/software HV is an emulator 
(somewhat, there is hardware-level integration)



4.1: Virtualization Features

Thin Clients

Run the computer in a VM & use a 
lower powered computer to access it

Overprovisioning

Allocate more resources than the 
host computer has to account for 
under-usage of resources

Abstraction

Resources can be easily reassigned 
or moved w/ minimal (if any) effect 
on the things that depend on it.

Live moving of VMs

A VM can be transferred statefully 
from one host to another & just have 
the system look at the new place

Abstraction: (see also: OpenStack, pfSense virtual IPs (Open vSwitch has similar?)).
Thin clients allow a work-from-anywhere model.
Overprovisioning is to account for VMs not fully utilizing resources they are allocated 
(for example, allocate 150% of host’s ability and get 100% usage by having VMs use 
66% on average).



Virtualization: Summary

Pros:

● Lots, and we can use everything 
from the “How #3: Automatic” 
slide (not that that was as 
interesting)

Cons:

● Still could use resources more 
efficiently



How? Process pt. 5: 
Containers

Why run x copies of [insert OS here]?

Let’s not!



5.1: VMs vs. Containers

VMs
● Have to run multiple copies of 

[insert OS here] and the base 
libraries/packages it uses

● Have to maintain all of the 
systems

● Can over-reserve resources
○ It can block off all the RAM it’s 

assigned even if it’s not using it all 
for example

Containers
● Run Docker and abstract the 

basic OS-level resources the 
containers need to run

● Simply make a new version and 
swap out the old instance

○ Orchestrators can do this
○ Can be done since containers are 

ultimately stateless except when 
explicitly not

● Automatically assigns resources



Questions?

Attempt to demo RancherOS


