
Encrypt ALL the things with
LetsEncrypt
Created by:
➔ Justin W. Flory
➔ Solomon Rubin
License: CC-BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

Introduction

What is TLS and why do I need it?

● TLS stands for Transport Layer Security
○ Difference between https and http

○ Encrypts communications with web servers on the fly

● Normally, purchase TLS certificate from Certificate Authority

Old problems with getting certificates

● Basic encryption is expensive (especially with multiple subdomains)

● Most certificate authorities (CAs) focus on identity or organization

verification
○ Most sites only need domain verification

What is LetsEncrypt?!

● Imagine a world where encryption is everywhere and your online

communications are always secure
○ LetsEncrypt offers solution to increase security of the web

● Free certificates
○ Providing only domain verification

■ At zero cost

○ Creates a safer Internet

Key Principles

● Free for anyone who owns a domain

● Automatic cert issuance through CertBot (by EFF) on web server

● Secure: “LE will serve as a platform for advancing TLS security...”

● Transparent: All certs issued and revoked are publicly logged

● Open: Cert management process is published as open source software.

● Cooperative: Joint effort between multiple organizations and community

https://certbot.eff.org/

Who made this happen?
I want to see the proof!

● Linux Foundation

● Sponsored by many large organizations
○ Mozilla, Cisco, EFF, Google Chrome, Facebook, SquareSpace, Shopify, Hewlett Packard…

○ Many more

How does it work (Root Cert Propagation)

● LE Root Certificate (ISRG Root 1X)
○ Kept safely offline

○ Propagated through Intermediates

● LE Intermediate Certificates (All IdentTrust cross-signed)
○ X1, X2 - Original Intermediates

○ X3 - Current generation Intermediate

○ X4 - Disaster Recovery Intermediate

Crazy Diagram!

How does it work? (Domain Verification)

● Automatic verification via DNS

● Three modes
○ Webroot: Domain verification service looks for file in the public web directory

○ Standalone: Uses ports 80/443 to respond to request from domain verification service

○ Automatic: Plugins for Apache and nginx

● Uses URL / key pairs

Verification
Process

● Challenge Sets

○ Adding key to a

specific, random URL

○ Verify from LE

servers

Getting your certificates

Installation (Certbot)

● Nowadays, available in most Linux package repositories
○ If not: Compile from source and run it (all Python underneath)

● Debian / Ubuntu / Debian-based distributions
○ $ sudo apt-get install certbot

● Red Hat Enterprise Linux / CentOS (via EPEL)
○ $ sudo yum install certbot

● Fedora
○ $ sudo dnf install certbot

● Arch Linux
○ $ sudo pacman -S certbot

https://dl.fedoraproject.org/pub/epel/

Issuing certificates: Webroot method

● Webroot uses root directory of your domain to verify domain authenticity
○ Places files in root directory, LE servers check if files are present

○ Most useful when using a CDN or something else in between connections to your servers

● Run the following command to get your certificate(s):

$ sudo certbot certonly -m me@example.com --webroot -w
/var/www/example.com/public_html/ -d example.com

mailto:me@example.com

Issuing certificates: Standlone method

● Standalone uses port 80 / 443 to verify domain authenticity
○ Requires ports 80 or 443 to not already be in use

● Run the following command to get your certificate(s):

$ sudo certbot certonly -m me@example.com --standalone -d
example.com --pre-hook=”systemctl stop nginx”
--post-hook=”systemctl start nginx”

mailto:me@example.com

Renewing certificates

● Renewing your certificates is… actually easy

● Run the following command to get your certificate(s):

$ sudo certbot renew

Run it in prod!

Writing an nginx conf for ex.io (1/3)

server {
listen 443 ssl;
server_name ex.io;
root /var/www/ex.io/public_html;

access_log /var/www/ex.io/logs/ex.io_access.log;
error_log /var/www/ex.io/logs/ex.io_error.log error;

Writing an nginx conf for ex.io (2/3)

ssl on;
ssl_certificate

/etc/ssl/certs/ex_io/ex_io-fullchain.pem;
ssl_certificate_key

/etc/ssl/certs/ex_io/ex_io-privkey.pem;
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers

"SSLv3:TLSv1:+HIGH:!SSLv2:!MD5:!MEDIUM:!LOW:!EXP:!ADH:!eNU
LL:!aNULL";

ssl_prefer_server_ciphers on;

Writing an nginx conf for ex.io (3/3)

location / {
 index index.html index.htm;
 server_tokens off;

}
}
server {

listen 80;
server_name ex.io;
rewrite ^ https://$server_name$request_uri?

permanent;
}

Just like that!

http://www.youtube.com/watch?v=p0OVD0_YJnU&t=77

Live Demo: nginx
Completely and totally unrehearsed.

brokenencryptionmakesmecry.jwf.io

https://brokenencryptionmakesmecry.jwf.io

Questions?
Comments?
Suggestions?

➔ Justin W. Flory
➔ Solomon Rubin

License: CC-BY-SA 4.0

