Scripting and Automation

What is the command line?

e The “scary terminal” (if you’re new to it, it’s not that scary, don’t worry)

e In computing, a shell is a user interface for access to an operating system's
services. (Wikipedia)

e Gives you access to more powerful things that are behind the scenes if you spend
most of your time in a graphical environment

What can | do with my command line?

e Pretty much anything! There are command line web browsers, chat clients, text
editors, and even image manipulation utilities.

e You can customize it with custom commands, prompts, even different shells

e It lets you access and manipulate your system in ways that graphical
environments often don’t support

Basic (Linux) shell commands

e File management: touch, mv, chmod, chown, rm, cp, In, Is
e Software (package) management: apt-get, pacman, yum, emerge, aptitude

e Accessing files: cat, tac, expand, vim, nano, emacs

Shell Scripting

What is shell scripting?

e Writing simple programs that run in your shell

o Your shell has its own programming language

e Many shell scripts are built by chaining utilities together

Basic Operators

e for, while, conditionals, etc
e Backticks (“”) run a command and gives you back the output

o there are more ways of doing this that can be more appropriate for what you’re doing

e Pipes (“|”) take the output of something, and send it to something else.

e Redirection (“>”) takes the output and dumps it into the file you specify

e Queueing (“&&”) lets you run another command after the first if the first ran
successfully

e Queueing (“||”) lets you run another command after the first, regardless of
whether the first ran successfully

e Some of these have more advanced options, but we’ll stay simple for now

Simple shell script

#!/bin/bash
logFile=$HOME/dyndns. log
lastIP="awk '/SUCCESS/ { save=$NF }END{ print save }' SlogFile 2>/dev/null’
currIP="curl -s --connect-timeout 5 icanhazip.com’
if [! "SlastIP" = "ScurrIP"] || [! -e SlogFile]; then
curl -s --connect-timeout 5 SURL && Success || Error
else
echo "“date’: OK: IP address (S$ScurrIP), has not changed since last check." >> $logFile
fi

from https://github.com/thenaterhood/shellzilla/blob/master/dynamic_ip_update.sh

“Shebang.” This says what to

Let,S break It down use to run our script.

#/btn/bash Set a variable with the path to

logFile=$HOME/dyndns. log our log

lastIP="awk '/SUCCESS/ { save=SNF }END{ print save }' $logFile 2>/dev/null’

currIP="curl -s --connect-timeout 5 icanhazip.com’ Open our log Wlth awk to fmd
the last IP we had. Redirect
errors into /dev/null

if [! "$SlastIP" = "ScurrIP"] || [! -e $logFile]; then

curl -s --connect-timeout 5 SURL && Success || Error

Get our current IP using curl
else

echo ""date’: OK: IP address ($ScurrIP), has not .. > $SlogFile

If our IP has changed or the
log doesn’t exist, use curl to
tell DNS and report the
success or failure

fi

What might you use this for?

e It’s a programming language. You can use it for anything!

e Scripts I use frequently:

(@)

O O O O O O

Update my dynamic IP address in DNS

Fix a permissions problem with my printer

Adjust my system volume

Configure multiple monitors

Back up my system

Print a folder of PDF files from the Internet

..and many more (github.com/thenaterhood/shellzilla)

Automation

For our purposes..

e . Automation is having your system run tasks for you automatically

Our Task

e Update our IP address in DNS so our domain name points to the right place
e We’'ll use the script we looked at before, placed in /bin/update_my_ip.sh:

Figures out the previous IP address update by looking at the log file, and exits if it is

the same as the current one, reflecting this in the log
lastIP="awk '/SUCCESS/ { save=$NF }END{ print save }' $logFile 2>/dev/null’
currIP="curl -s --connect-timeout 5 icanhazip.com

Checks if a logfile exists and if the last and current IP's are the same,
and pulls the url if either happens to not be the case.

® You can write scripts and tools in any language you want

Cron (and relatives)

e Schedule things to run at certain times in a recurring fashion
o Simple enough, right?

e Use Anacron (a similar utility that comes with some versions of cron) to make
sure tasks aren’t missed when your system is off

e Optionally, have it email you the results

Setting up Cron (the easy way)

e Make sure cron is installed and enabled
o sudo apt-get install cron
o sudo systemctl enable cron --now

e Set up the task

o Put the script in /etc/cron.hourly/ to run it hourly
B sudo cp /bin/update my ip.sh /etc/cron.hourly/

Setting up Cron (the detailed way)

e Make sure cron is installed and enabled
o sudo apt-get install cron
o sudo systemctl enable cron --now

e Set up the task
o Run'crontab -e' to edit your crontab
o Add'e * * * * /bin/update my_ip.sh’

Detailed Cron

O * * * *

Year
Month
IDENY

Hour
Minute

/binfupdate_my_ip.sh

e You can break these down further, e.g. for every 5 minutes put */5 for minutes
e There are special values you can use instead, such as @reboot, @midnight, etc

e You can also have tasks run as a specific user, email the output, and other things
o Good reference: https://wiki.archlinux.org/index.php/Cron

Systemd Timers

e A little more powerful than cron, but harder to set up and no email notifications

o Requires you to create a service file and a timer file

e Already installed on most modern distros as part of systemd

e Manage your timers like other services on your system

Systemd Services (quick aside)

e How most (likely all) of your system services are handled

® Service or unit files describe services
o And, they’re pretty simple to write!

® These are what systemd looks at when you tell it to do things with services

o Your systemctl commands

Create the service file for our timer

. This section is where you
[Unit]

Description=MyIPUpdateService

describe metadata about your
service. Ours is super simple.

[Service] This section is where you
Ty pe=simpl\ describe how to run your service.
ExecStart=/bin/update_my_1ip.sh We're tell it what to run and that

it will exit once run
[Install]
N A This section is where you

describe how your service
behaves. Here, we say not to start
it until the network comes up.

Systemd Services

e You can go into far more detail about your service if need be

o https://[www.digitalocean.com/communityv/tutorials/understanding-systemd-units-and-unit-files has

a great breakdown of service files

https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-unit-files

So now, timers!

e We’ll take the service file we created a couple slides back...

[Unit]
Description=MyIPUpdateService

o ..and put it in /etc/systemd/system/update_my_ip.service

e Next, we’ll create the timer for it

Our Timer (similar to the systemd service)

[Unit]
Description=Runs our IP update every hour

[Timer] — Timer definition. Wait 10 seconds after we
OnBootSec=10min

OnUnitActiveSec=1h
Unit=update_my ip.service

boot and run our service every hour

[Install]
WantedBy=multi-user.target

Save and enable your timer

e We’ll save that file into /etc/systemd/system/update_my_ip.timer

e FEnable and start our timer

o sudo systemctl enable update_my_ip.timer --now

At and Batch

e at is a utility that will run a task exactly once when you tell it to, and "batch™ will
run a task when the system load is below a threshold

e [f you want to schedule a task more than once, "at is not the best choice
o We'll use our same IP script here, but “at is likely not the best option for handling it

e Not usually pre-installed, but should be in your package manager

o You will need to start and enable its service (atd)

Create an “at™ task

at lam tomorrow
/bin/update my_1ip.sh

(hit enter then ctrl+d - “at”)

“at” will give you back a message which includes a job number. Cancel your job using
‘atrm $jobnumber’

Create a “batch” task

batch 0.5
/bin/update my_1ip.sh

(hit enter then ctrl+d)

“batch” will give you back a message which includes a job number. Cancel your job
using "atrm $jobnumber.

Other basic scheduling options

e Run the script when you log in to a shell - likely a pretty useless way of handling

IP updates:
o Add '/bin/update_my_ip.sh" to your shell config or ~/.profile

e Run the script when you log into X11 (your graphical desktop) - likely even less

useful of a way to handle IP updates:
o Add "exec /binfupdate_my_ip.sh to your ~/xinitrc

