
Encrypt ALL the things with 
Let’s Encrypt
Created by:
➔ Justin W. Flory
➔ Solomon Rubin
License: CC-BY-SA

 



Introduction



What is SSL and why do I need it?

● SSL stands for Secure Sockets Layer
○ Difference between https and http
○ Encrypts your communications with a website on the fly

● Normally you need to purchase a SSL certificate from a Certificate 
Authority

○ Sometimes pricey, especially if you have multiple subdomains too

○ Let’s Encrypt offers a solution to this problem to help increase the overall security of the 
web

● Imagine a world where encryption is everywhere and your online 
communications are always secure (lol)



What is LetsEncrypt?!

● Problems with certificate issuance
○ Basic encryption is expensive
○ Most certificate authorities (CAs) focus on identity or organization verification
○ Most sites only need domain verification 

● Free certificates
○ Providing only domain verification 

■ At zero cost
○ To create a safer web



Key Principles

● Free for anyone who owns a domain
● Automatic cert issuance through client software located on the web-server
● Secure: “LE will serve as a platform for advancing TLS security...”
● Transparent: All certs issued and revoked get publicly logged
● Open: Cert management process is published as open source software.
● Cooperative: LE is a joint effort between multiple organizations and the 

community!



Who made this happen? 
I want to see the proof!

● Linux Foundation
● Sponsored by many large organizations

○ Mozilla
○ Cisco
○ Facebook
○ IdenTrust
○ Electronic Frontier Foundation
○ Hewlett Packard
○ Many more



How does it work (Root Cert Propagation)

● LE Root Certificate (ISRG Root 1X)
○ Kept safely offline.
○ Propagated through Intermediates

● LE Intermediate Certificates (All IdentTrust cross-signed)
○ X1, X2 - Original Intermediates
○ X3 - Current generation Intermediate
○ X4 - Disaster Recovery Intermediate



Crazy Diagram!



How does it work? (Domain Verification)

● Automatic DNS based verification 
● Three Methods

○ Apache, Webroot, Standalone
○ NginX (experimental)

● Uses URL/Key Pairs



Verification 
Process

Challenge Sets

● Adding a key to a specific, 
random url

● Verify from LE servers



Getting your certificates



Installation

● Nowadays, available in most Linux distribution package managers
○ If not, it is still possible to compile from source and run it (it is all Python under the hood!)

● Debian / Ubuntu / Debian-based distributions
○ $ sudo apt-get install letsencrypt

● Red Hat Enterprise Linux / CentOS (via EPEL)
○ $ sudo yum install letsencrypt

● Fedora
○ $ sudo dnf install letsencrypt

● Arch Linux
○ $ sudo pacman -S letsencrypt

https://dl.fedoraproject.org/pub/epel/


Issuing Certificates via standalone

● Standalone uses port 80 / 443 to verify the authenticity of the domain
○ Requires you not to be using port 80 or 443 already (if you have a web server running, you 

can temporarily stop it)
○ Most useful when setting up a new domain that does not already exist on your webserver

● Run the following command to get your certificate(s):
○ $ sudo letsencrypt certonly -m me@example.com --standalone -d 

example.com

mailto:me@example.com


Issuing Certificates via webroot

● Webroot uses the root directory of your domain to verify the authenticity of 
the domain

○ Places files in the root directory and LE servers will check if the files are present for the 
domain

○ Most useful when setting up an existing domain that you are migrating to https

● Run the following command to get your certificate(s):
○ $ sudo letsencrypt certonly -m me@example.com --webroot -w 

/var/www/example.com/public_html/ -d example.com

mailto:me@example.com


Run it in prod!



Writing an nginx conf file (pt. 1)

server {
listen      443 ssl;
server_name  ex.io;
root        /var/www/ex.io/public_html;

access_log   /var/www/ex.io/logs/ex.io_access.log;
error_log    /var/www/ex.io/logs/ex.io_error.log error;



Writing an nginx conf file (pt. 2)

ssl             on;
Ssl_certificate /etc/ssl/certs/ex_io/ex_io-fullchain.

pem;
ssl_certificate_key /etc/ssl/certs/ex_io/ex_io-privkey.

pem;
ssl_protocols   TLSv1 TLSv1.1 TLSv1.2;
ssl_prefer_server_ciphers on;



Writing an nginx conf file (pt. 3)

ssl_ciphers "ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-
AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:ECDHE-RSA-AES256-SHA384:E
CDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA:ECDHE-RSA-
AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:
DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:ECD
HE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES256-GCM-
SHA384:AES128-GCM-SHA256:AES256-SHA256:AES128-SHA256:
AES256-SHA:AES128-SHA:DES-CBC3-SHA:HIGH:!aNUL
L:!eNULL:!EXPORT:!DES:!MD5:!PSK:!RC4";



Writing an nginx conf file (pt. 4)

location / {
    index  index.html index.htm;
    server_tokens off;

}
}
server {

listen    80;
server_name ex.io;
rewrite   ^   https://$server_name$request_uri? 

permanent;
}



How ‘bout ‘dem 
apples?



Apache Live Demo
Completely and totally unrehearsed.



Questions? 
Comments? 
Suggestions?

➔ Justin W. Flory
➔ Solomon Rubin

License: CC-BY-SA


