
Pimp your Shell
CC BY-SA 2015 Nate Levesque

Why would you pimp your shell?
● Make it work the way you do!

○ Alias your typos, add commands, make it easier to look at

● Make it pretty

● Show more information

○ Add your Git status to your prompt when you’re in a Git repo

○ Show when you’re in an SSH session

○ Anything you can imagine!

How?
● Your shell loads a configuration file when you log in and open a shell

○ This file is a shell script

● If you can shell script, you can make your terminal do anything

○ Custom colors are super annoying!

● You can extend your shell using extensions such as Powerline, and depending on

your shell with helpers like Oh-My-Zsh

The shell you use changes your pimping!
● Not all shells are compatible with each other

● Some shells are “drop-in” replacements for each other but have a number of extra

options you may want

● Different shells may use different configuration files

○ bash uses ~/.bashrc, zsh uses ~/.zshrc

● Different systems may not have the same facilities (Mac OS, Cygwin, Linux, BSD,

etc)

Let’s talk about some basics

Settings and Customizations
● In Linux-like systems, most of your personal configuration is stored in your home

directory as “dotfiles”

● Some people choose to share their dotfiles on Github, and can be a good place to

find cool things and inspiration

○ Typically these include settings for a variety of programs, including your shell

One Caveat to Shell Customizations
● Some applications use your shell non-interactively and customizations may break

them in weird ways

○ CVS, SCP, and others

● Make sure to put this at the top of your shell config file so your customizations

are only applied if a user is using your shell:

[[$- != *i*]] && return

Aliasing Commands
● Aliases are written as <name of your alias>='the command'

● You can alias any command including its command line flags

Some Useful Aliases
alias sl='ls -lr' # No damn steam locomotives here

alias ll='ls -l'

alias pgp='gpg'

alias pls='sudo !!' # this doesn’t work in all shells

alias KILLITWITHFIRE='kill -9'

Writing your own functions
● Your shell customizations are just a/some shell script/s!

● In shell scripts you can define your own functions, like with most programming languages

● Functions in your shell config are available by calling the name of the function in your shell

● Functions are defined (in Bash and Zsh) like:

functionName(){

}

● You can’t do parameters as you would expect; you pass parameters by calling functionName arg1 arg2

…

● You access passed parameters in your function using $1, $2, ...

Some examples
ufsshfs(){

Forcibly kills and unmounts an SSHFS
endpoint, caused by unfortunate
events where SSHFS is broken
killall -KILL sshfs
fusermount -u $1

}

mkGit(){
Sets up a git repository skeleton
with an initial README, LICENSE, and
.gitignore and performs an initial
commit after adding all the files.
git init
basename `pwd` > README.md
echo -e "============" >> README.md
echo -e '__pycache__' >> .gitignore
echo -e 'bin' >> .gitignore
echo -e 'LICENSE' >> LICENSE
git add LICENSE README.md .gitignore
git commit -m "Create repository

skeleton"
}

Customizing your Prompt
● Your prompt is stored in a variable called $PS1 so you can change it just by

setting the variable to another value

○ There is also PS2, PS3, and PS4 for other things, and are not as commonly customized

● You can add data to your prompt such as the time

● You can customize your prompt colors

○ This is annoying because these are defined using escape codes in some shells

○ You can also do gradients

A possibility of a custom Bash prompt

https://github.
com/teranex/dotfiles/blob/master/bash/trexprompt

A possibility for a custom Zsh prompt

https://gist.github.com/kevin-smets/8568070

Here’s mine!

https://github.com/thenaterhood/dotfiles/shellrc

You can add a custom greeting to your shell
● You may have noticed a welcome message on my shell

● This is separate from (and in addition to) your /etc/motd

● You can have your shell print anything when you log in

Cheatsheet
`readlink -f /proc/$$/exe` # Figure out what shell you’re running

if ["$SSH_CONNECTION" != ""]; then … # Do something if this is an SSH session

[[$- != *i*]] && return # Don’t apply customizations if not interactive

Things that seem like a good idea, but may not be
● Making your prompt super long - it may not fit on your screen

○ Putting your full current path in your prompt can be a problem, which is why my prompt is

multiple lines

● Putting a lot of colors in your prompt

○ Colors don’t show up the same in all shells, and graphical shells may have a different background

color

● Putting the time in your prompt - this *can* be useful, but remember that it’s the

time your prompt printed, not necessarily the current time

● Removing the hostname from your prompt

○ This is how you accidentally reboot remote servers because you forgot what machine you’re on

● Using if statements to customize for multiple shells in one file, if you’re doing

anything complex

Let’s talk about Powerline

What is Powerline?
● Powerline is an extension (available for your shell, vim, tmux, and others) that

gives you a quasi-graphical bar showing extra information

● Powerline is a popular way of customizing but can take some tweaking to get it to

your liking

● You can get it at https://github.com/powerline/powerline and through pip

(Powerline is written in Python)

https://github.com/powerline/powerline

Powerline Prompts

Installing Powerline
● Powerline requires Python, GCC, and other packages depending on the setup you

want

● Powerline is available in pip as powerline-status and in some package managers as

python-powerline

● After installing the package manually, run

ln -s {path_to_powerline}/scripts/powerline ~/.local/bin

● On Arch, Powerline is available in the AUR and will do all the necessary setup for

you and install itself for Vim automatically (though this may not work correctly)

Installing Powerline’s fonts (if you installed manually)
● Powerline uses patched fonts (glyphs) which need to be configured

wget https://github.com/powerline/powerline/raw/develop/font/PowerlineSymbols.otf

wget https://github.com/powerline/powerline/raw/develop/font/10-powerline-symbols.conf

mv PowerlineSymbols.otf ~/.fonts/

fc-cache -vf ~/.fonts/

mv 10-powerline-symbols.conf ~/.config/fontconfig/conf.d/

Using the defaults (On Arch with Zsh)
Run `. /usr/share/zsh/site-contrib/powerline.zsh`

● This will start Powerline in your shell for the current session only

● You can use powerline all the time by adding that line to your shell configuration

● On other distros, the path may vary depending how and where you installed

● You may need to upgrade (g)vim to (g)vim-python3 in order to fix an error

before using the Python3 version of Powerline in Vim

Powerline Configuration Files
● Main configuration

○ powerline/config.json

● Colorschemes

○ powerline/colorschemes/{name}.json

○ powerline/colorschemes/{extension}/__main__.json

○ powerline/colorschemes/{extension}/{name}.json

● Themes

○ powerline/themes/top_theme.json

○ powerline/themes/{extension}/__main__.json

○ powerline/themes/{extension}/default.json

Powerline documentation is at powerline.
readthedocs.org

Let’s talk about Oh-My-Zsh

What is Oh-My-Zsh?
● An open source framework for managing your Zsh configuration

● Has 200+ extensions

● Has 140+ themes

● Auto-updates!

Installing Oh-My-Zsh
sh -c "$(wget https://raw.github.com/robbyrussell/oh-my-zsh/master/tools/install.sh -O -)"

● Note: I do NOT advocate for running scripts directly from the Internet as this command does. Make sure

you know what you’re running

● Oh-My-Zsh may also be available in your package manager (it’s available for Arch in the AUR)

● Oh-My-Zsh is for Zsh and does not work with other shells (but can be used for inspiration!)

Configuring Oh-My-Zsh
● Edit your ~/.zshrc file

● Specify plugins by adding `plugins=({your}, {plugins})` or by adding to the

array

● Set a theme by setting ZSH_THEME to the theme of your choice

○ According to the documentation, “if you’re feeling feisty”, you can also set this to “random”

Oh-My-Zsh documentation is at github.
com/robbyrussell/oh-my-zsh

Closing Thoughts
● If you have a lot of dotfiles, writing an installer script isn’t necessarily a bad idea

○ I have one so that I can clone my dotfiles on a new system, run ./install.sh and be good to go

● Your distribution may ship with certain settings out of the box, either in your

home directory or in /etc

● You can configure most things systemwide by putting their settings in /etc

● There are many ways to do things. What works for someone else may not work

for you

● Make sure you still have a general idea of how to do things without your

customizations, since sometimes you can’t use them

● Follow conventions for your dotfiles! It makes it easier to push them out if you

work at a company that allows you to push them via their automation

Questions, Comments, Concerns...

