
•An introductory guide to the standard text editor
•Presented by Hector A Escobedo IV

Editing With ed

Why ed?

• ed is the standard text editor for Unix and Unix-
like systems. SUS and POSIX require it.
Therefore you can use it on practically any
system, even if it doesn't have vim or Emacs.
The binary is usually less than 48 KB!

• In addition, if you are working over dialup or a
110 baud teletype, ed's minimalist user
interface will help you make the most of your
bandwidth. It won't clog up the pipe with
verbose error messages, and only displays
what you're editing when you ask it to do so.
Outgoing, you only send one-character
mnemonic commands and the text you want to
insert or edit.

Basic concepts

• Like vim, ed is a modal editor. It has only two
modes: command mode and input mode. In
command mode, you can edit lines in the
buffer, execute external shell commands, read
and write files, and print the contents of the
buffer. In input mode, you append or insert text
into the buffer.

• Unlike vim, which is a display editor, ed is a
line editor. Only one line is manipulated at a
time, except for global regular expressions.
Also unlike vim, ed has no scripting language.
In fact, it was designed to be used as a
component of batch editing scripts itself!

Viewing a file

• First, let's view the contents of a file. Invoke ed
from the command line with the filename as an
argument.

• user@hostname$ ed foo.txt
• 27

• It immediately displays the number of
characters read into the buffer, including
newlines. Use the 'p'rint command to display
the contents.

• ,p
• I love foo.
• So should you!

Line addresses

• Wait a second, what was the meaning of that
comma we entered before 'p'rint? Well, every
line in the buffer is numbered, starting from 1.
Most commands take a line number or range of
line numbers as a prefix argument, and by
default use the current line. When a file is first
read, the current line is set to the last line in the
file, and a newline is appended if needed.

• A range is entered as 'x,y' where x is the first
line and y is the last line in the range. The last
line in the buffer can also be referred to as '$',
and you can also use the relative positions of
lines like '+1', meaning the next line, or '-2', the
2nd previous line. ed interprets the empty range
',' as meaning “every line in the buffer”, so what
we entered was the equivalent of '1,$p'.

Inserting text

• The 'a'ppend command inserts text into the
buffer. It takes a line number argument for the
line to append the input after. This enters input
mode, and a line consisting of a single period
ends the input and returns to command mode.

• 1a
• We all use it.
• .
• ,p
• I love foo.
• We all use it.
• So should you!

Saving the buffer and exiting

• The 'w'rite command writes the editing buffer to
a file. It takes a file path postfix argument, of
which the default is set to the file we last read.
You can also use a prefix line number
argument if you only want to save certain lines.
The 'q'uit command quits.

• wq
• 42
• user@hostname$

• It displays the number of characters written.

Changing lines

• The 's'ubstitute command changes one or
more lines by replacing the match of a regular
expression. The regular expression to match
and the replacement are delimited by
surrounding slashes. You can add a print
command at the end to see the result.

• user@hostname$ ed foo.txt
• 42
• 1s/love/really admire/p
• I really admire foo.

Finding and changing multiple lines

• The 'g'lobal substitute command is similar to 's'
but it operates on every line in the buffer. You
can use it without changing anything by
omitting the replacement string. Fun fact: the
Unix command 'grep' ('re' for 'regular
expression') was named after this use of the
command and designed as a stand-alone
implementation to use outside of ed.

• g/you/p
• So should you!

Running external commands

• We mentioned earlier that you can run external
commands in ed. The syntax for this is '!
command', which can be entered by itself or in
combination with with other commands. When
running an external command, '%' is expanded
to the default filename. The output of the
external command is shown and then '!'
indicates that it has terminated. You can use
interactive external commands.

• !tac %
• tac foo.txt
• So should you!
• We all use it.
• I love foo.
• !

And much more

• If you found this interesting, you can look at the
GNU Info page for ed.

• user@hostname$ info ed

• Thank you for your attention, and remember,
ed is the standard, the true path to nirvana, and
the greatest WYGIWYG editor of all!

• Copyleft 2015 Hector A Escobedo IV

• This work is licensed under a .

